如圖7,等腰三角形ABC中,AB=AC,AH垂直BC,點(diǎn)E是AH上一點(diǎn),延長(zhǎng)AH至點(diǎn)F,使FH=EH,

(1)求證:四邊形EBFC是菱形;

(2)如果=,求證:

 


(1) 證明:∵,

,

∴四邊形是平行四邊形.

又∵,

∴四邊形是菱形.

(2)證明:∵四邊形是菱形.

,,

=

即:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

52、如圖,在等腰三角形ABC中,AB=AC,O為AB上一點(diǎn),以O(shè)為圓心、OB長(zhǎng)為半徑的圓交BC于D,DE⊥AC交AC于E.
求證:DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,在等腰三角形ABC中,AB=AC=10,EF垂直平分AB,如果△FBC的周長(zhǎng)為15,則BC=
5
;如果BC=6,則△FBC的周長(zhǎng)為
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河池)如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標(biāo)系,拋物線y=-
1
2
x2+
7
2
x+4經(jīng)過(guò)A、B兩點(diǎn).
(1)寫(xiě)出點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)若一條與y軸重合的直線l以每秒2個(gè)單位長(zhǎng)度的速度向右平移,分別交線段OA、CA和拋物線于點(diǎn)E、M和點(diǎn)P,連接PA、PB.設(shè)直線l移動(dòng)的時(shí)間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;
(3)在(2)的條件下,拋物線上是否存在一點(diǎn)P,使得△PAM是直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰三角形ABC中,兩底角的平分線BE和CD相交于點(diǎn)0,則△OBC是
等腰
等腰
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在等腰三角形ABC中,AB=AC,P是底邊BC上任意一點(diǎn),過(guò)點(diǎn)P作PE⊥AB,PF⊥AC,垂足分別為E,F(xiàn),過(guò)點(diǎn)B作BD⊥AC,垂足為D.求證:PE+PF=BD.

查看答案和解析>>

同步練習(xí)冊(cè)答案