在某市開展的環(huán)境創(chuàng)優(yōu)活動中,某居民小區(qū)要在一塊靠墻(墻長15米)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若設(shè)花園平行于墻的一邊長為x(m),花園的面積為y(m2).
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時x的值,若不能,說明理由;
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時,花園的面積最大,最大面積是多少?
分析:(1)設(shè)花園靠墻的一邊長為x(m),另一邊長為
,用面積公式表示矩形面積;
(2)就是已知y=200,解一元二次方程,但要注意檢驗結(jié)果是否符合題意;即結(jié)果應(yīng)該是0<x≤15.
(3)由于0<x≤15,對稱軸x=20,即頂點不在范圍內(nèi),y隨x的增大而增大.∴x=15時,y有最大值.
解答:解:(1)根據(jù)題意得:y=x•
,
即y=-
x
2+20x(0<x≤15)
(2)當(dāng)y=200時,即-
x
2+20x=200,
解得x
1=x
2=20>15,
∴花園面積不能達(dá)到200m
2.
(3)∵y=-
x
2+20x的圖象是開口向下的拋物線,對稱軸為x=20,
∴當(dāng)0<x≤15時,y隨x的增大而增大.
∴x=15時,y有最大值,
y
最大值=-
×15
2+20×15=187.5m
2即當(dāng)x=15時,花園的面積最大,最大面積為187.5m
2.
點評:本題考查實際問題中二次函數(shù)解析式的求法及二次函數(shù)的實際應(yīng)用.此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實際問題.
科目:初中數(shù)學(xué)
來源:2011-2012學(xué)年浙江省杭州市保俶塔實驗學(xué)校九年級(上)第一次月考數(shù)學(xué)試卷(一)(解析版)
題型:解答題
在某市開展的環(huán)境創(chuàng)優(yōu)活動中,某居民小區(qū)要在一塊靠墻(墻長15米)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若設(shè)花園靠墻的一邊長為x(m),花園的面積為y(m2).
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時x的值,若不能,說明理由;
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時,花園的面積最大,最大面積是多少?
查看答案和解析>>