在平面直角坐標(biāo)系中,已知A(0,3),B(4,0),設(shè)P、Q分別是線段AB、OB上的動(dòng)點(diǎn),它們同時(shí)出發(fā),點(diǎn)P以每秒3個(gè)單位的速度從點(diǎn)A向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度從點(diǎn)B向點(diǎn)O運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)用含t的代數(shù)式表示點(diǎn)P的坐標(biāo);
(2)當(dāng)t為何值時(shí),△OPQ為直角三角形?
(3)在什么條件下,以Rt△OPQ的三個(gè)頂點(diǎn)能確定一條對(duì)稱軸平行于y軸的拋物線?選擇一種情況,求出所確定的拋物線的解析式.

【答案】分析:(1)作PM⊥y軸,PN⊥x軸,那么PM就是P點(diǎn)的橫坐標(biāo),PN就是P點(diǎn)的縱坐標(biāo).然后可通過(guò)相似三角形AMP和AOB求出MP的長(zhǎng),同理可通過(guò)相似三角形BPN和BAP求出PN的長(zhǎng),即可得出P點(diǎn)的坐標(biāo).
(2)本題要分情況進(jìn)行討論:
①當(dāng)∠POQ=90°時(shí),P,A重合此時(shí)t=0;
當(dāng)∠OPQ=90°時(shí),可根據(jù)射影定理得出PN2=ON•NQ,由此可求出t的值.
當(dāng)∠OPQ=90°時(shí),Q,N重合,可用BQ的長(zhǎng)表示出P點(diǎn)的橫坐標(biāo),以此可求出t的值.
(3)很顯然當(dāng)∠OPQ=90°時(shí),可確定一條符合條件的拋物線,可根據(jù)(2)中得出的∠OPQ=90°時(shí)t的取值,確定出P,Q的坐標(biāo),然后用待定系數(shù)法即可求出這條拋物線的解析式.
解答:解:(1)作PM⊥y軸,PN⊥x軸.
∵OA=3,OB=4,
∴AB=5.
∵PM∥x軸,
,
,
∴PM=t.
∵PN∥y軸,
,
,
∴PN=3-t,
∴點(diǎn)P的坐標(biāo)為(t,3-t).

(2)①當(dāng)∠POQ=90°時(shí),t=0,△OPQ就是△OAB,為直角三角形.
②當(dāng)∠OPQ=90°時(shí),△OPN∽△PQN,
∴PN2=ON•NQ.
(3-t)2=t(4-t-t).
化簡(jiǎn),得19t2-34t+15=0,
解得t=1或t=
③當(dāng)∠OQP=90°時(shí),N、Q重合.
∴4-t=t,
∴t=
綜上所述,當(dāng)t=0,t=1,t=,t=時(shí),△OPQ為直角三角形.

(3)當(dāng)t=1或t=時(shí),即∠OPQ=90°時(shí),
以Rt△OPQ的三個(gè)頂點(diǎn)可以確定一條對(duì)稱軸平行于y軸的拋物線.
當(dāng)t=1時(shí),點(diǎn)P、Q、O三點(diǎn)的坐標(biāo)分別為P(),Q(3,0),O(0,0).
設(shè)拋物線的解析式為y=a(x-3)(x-0),
即y=a(x2-3x).
將P(,)代入上式,
得a=-
∴y=-(x2-3x).
即y=-x2+x.
說(shuō)明:若選擇t=時(shí),點(diǎn)P、Q、O三點(diǎn)的坐標(biāo)分別是P(,),Q(,0),O(0,0).
求得拋物線的解析式為y=-x2+x.
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、三角形相似、直角三角形的判定等知識(shí)點(diǎn),考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、在平面直角坐標(biāo)系中,點(diǎn)P到x軸的距離為8,到y(tǒng)軸的距離為6,且點(diǎn)P在第二象限,則點(diǎn)P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、在平面直角坐標(biāo)系中,點(diǎn)P1(a,-3)與點(diǎn)P2(4,b)關(guān)于y軸對(duì)稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點(diǎn).
(1)請(qǐng)?jiān)偬砑右稽c(diǎn)C,求出圖象經(jīng)過(guò)A、B、C三點(diǎn)的函數(shù)關(guān)系式.
(2)反思第(1)小問(wèn),考慮有沒有更簡(jiǎn)捷的解題策略?請(qǐng)說(shuō)出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點(diǎn),D是拋物線的頂點(diǎn),O為精英家教網(wǎng)坐標(biāo)原點(diǎn).A、B兩點(diǎn)的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點(diǎn)P,使△APC的面積最大?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和△APC的最大面積;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、在平面直角坐標(biāo)系中,把一個(gè)圖形先繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)的角度為θ,再以原點(diǎn)為位似中心,相似比為k得到一個(gè)新的圖形,我們把這個(gè)過(guò)程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度為90°,再以原點(diǎn)為位似中心,相似比為2得到一個(gè)新的圖形△A1B1C1,可以把這個(gè)過(guò)程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點(diǎn)坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過(guò)【θ,k】變換后得到△O′M′N′,若點(diǎn)M的對(duì)應(yīng)點(diǎn)M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊(cè)答案