【題目】如圖,四邊形ABCD中,AE平分∠BAD,DE平分∠ADC.
(1)如果∠B+∠C=120°,則∠AED的度數(shù)=______.(直接寫出結(jié)果)
(2)根據(jù)⑴的結(jié)論,猜想∠B+∠C與∠AED之間的關(guān)系,并說明理由.
【答案】(1)60°;(2)∠AED=(∠B+∠C).理由見解析.
【解析】
(1)根據(jù)四邊形的內(nèi)角和等于360°求出∠BAD+∠CDA,再根據(jù)角平分線的定義求出∠EAD+∠EDA,然后根據(jù)三角形的內(nèi)角和等于180°列式計(jì)算即可得解;
(2)根據(jù)四邊形的內(nèi)角和等于360°表示出∠BAD+∠CDA,再根據(jù)角平分線的定義求出∠EAD+∠EDA,然后根據(jù)三角形的內(nèi)角和等于180°列式整理即可得解.
(1)在四邊形ABCD中,∵∠B+∠C=120°,∴∠BAD+∠CDA=360°﹣120°=240°.
∵AE平分∠BAD,DE平分∠ADC,∴∠EAD∠BAD,∠EDA∠ADC,∴∠EAD+∠EDA∠BAD∠ADC(∠BAD+∠CDA)240°=120°.
在△AED中,∠AED=180°﹣(∠EAD+∠EDA)=180°﹣120°=60°.
故答案為:60°.
(2)∠AED(∠B+∠C).理由如下:
在四邊形ABCD中,∵∠BAD+∠CDA+∠B+∠C=360°,∴∠BAD+∠CDA=360°﹣(∠B+∠C).
又∵AE平分∠BAD,DE平分∠ADC,∴∠EAD∠BAD,∠EDA∠ADC,∴∠EAD+∠EDA∠BAD∠ADC[360°﹣(∠B+∠C)].
在△AED中,∵∠AED=180°﹣(∠EAD+∠EDA)=180°[360°﹣(∠B+∠C)](∠B+∠C),故∠AED(∠B+∠C).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,的平分線交AD于點(diǎn)E,交BA的延長線于點(diǎn)F,,,則AF的長度是
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC=EC,∠BCE=∠ACD,如果只添加一個(gè)條件,使△ABC ≌ △DEC,則添加的條件不能為( )
A. ∠B=∠E B. AC=DC C. ∠A=∠D D. AB=DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
情形展示:
情形一:如圖,在中,沿等腰三角形ABC的頂角的平分線折疊,若點(diǎn)B與點(diǎn)C重合,則稱是的“好角”,如圖,在中,先沿的平分線折疊,剪掉重復(fù)部分,再將余下部分沿的平分線折疊,若點(diǎn)與點(diǎn)C重合,則稱是的“好角”.
情形二:如圖,在中,先沿的平分線折疊,剪掉重復(fù)部分,再將余下部分沿的平分線折疊,剪掉重復(fù)部分重復(fù)折疊n次,最終若點(diǎn)與點(diǎn)C重合,則稱是的“好角”,探究發(fā)現(xiàn):不妨設(shè)
如圖,若是的“好角”,則與的數(shù)量關(guān)系是:______.
如圖,若是的“好角”,則與的數(shù)量關(guān)系是:______.
如圖,若是的“好角”,則與的數(shù)量關(guān)系是:______.
應(yīng)用提升:
如果一個(gè)三角形的三個(gè)角分別為,,,我們發(fā)現(xiàn)和的兩個(gè)角都是此三角形的“好角”;如果有一個(gè)三角形,它的三個(gè)角均是此三角形的“好角”,且已知最小的角是,求另外兩個(gè)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) C 為線段 AB 上一點(diǎn),△ACM、△CBN 都是等邊三角形,AN、MC 交于點(diǎn) E,BM、CN 交于點(diǎn) F
(1)說明 AN=MB 的理由
(2)△CEF 是什么三角形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)在圖中畫出△ABC與關(guān)于y軸對稱的圖形△A1B1C1,并寫出頂點(diǎn)A1、B1、C1的坐標(biāo);
(2)若將線段A1C1平移后得到線段A2C2,且A2(a,2),C2(-2,b),求a+b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系中頂點(diǎn)為點(diǎn)M的拋物線是由拋物線向右平移1個(gè)單位得到的,它與y軸負(fù)半軸交于點(diǎn)A,點(diǎn)B在拋物線上,且橫坐標(biāo)為3.
寫出以M為頂點(diǎn)的拋物線解析式.
連接AB,AM,BM,求;
點(diǎn)P是頂點(diǎn)為M的拋物線上一點(diǎn),且位于對稱軸的右側(cè),設(shè)PO與x正半軸的夾角為,當(dāng)時(shí),求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖1,D是等邊三角形ABC邊BA上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊三角形DCF,連接AF.你能發(fā)現(xiàn)線段AF與BD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論.
(2)類比猜想:如圖2,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)到等邊三角形ABC邊BA的延長線上時(shí),其他作法與(1)相同,猜想AF與BD在(1)中的結(jié)論是否仍然成立?如果成立,請證明;如果不成立,是否有新的結(jié)論?如果有新的結(jié)論,直接寫出新的結(jié)論,不需證明.
(3)深入探究:①如圖3,當(dāng)動(dòng)點(diǎn)D在等邊三角形ABC的邊BA上運(yùn)動(dòng)時(shí)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在其上方、下方分別作等邊三角形DCF和等邊三角形DCF',連接AF,BF′.探究AF,BF′與AB有何數(shù)量關(guān)系?并證明你發(fā)現(xiàn)的結(jié)論。
②如圖4,當(dāng)動(dòng)點(diǎn)D在等邊三角形ABC的邊BA的延長線上運(yùn)動(dòng)時(shí),其他作法與圖3相同,①中的結(jié)論是否仍然成立?如果成立,請證明;如果不成立,是否有新的結(jié)論?如果有新的結(jié)論,直接寫出新的結(jié)論,不需證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com