【題目】
(1)一只不透明的袋子中裝有顏色分別為紅、黃、藍、綠的球各1個.這些球除顏色外都相同.求下列事件的概率: ①攪勻后從中任意摸出1個球,恰好是紅球;
②攪勻后從中任意摸出1個球,記錄下顏色后放回袋子中并攪勻,再從中任意摸出1個球,兩次都是紅球;
(2)某次考試共有6道選擇題,每道題所給出的4個選項中,恰有一個是正確的.如果小明從每道題的4個選項中隨機地選擇1個,那么他6道選擇題全部正確的概率是
A.
B.
C.1﹣
D.1﹣

【答案】
(1)解:①攪勻后從中任意摸出1個球,恰好是紅球的概率為 ;

②列表如下:

(紅,紅)

(黃,紅)

(藍,紅)

(綠,紅)

(紅,黃)

(黃,黃)

(藍,黃)

(綠,黃)

(紅,藍)

(黃,藍)

(藍,藍)

(綠,藍)

(紅,綠)

(黃,綠)

(藍,綠)

(綠,綠)

所有等可能的情況數(shù)有16種,其中兩次都為紅球的情況數(shù)有1種,

則P=


(2)B
【解析】解: (2)每道題所給出的4個選項中,恰有一個是正確的概率為 , 則他6道選擇題全部正確的概率是( 6
故選B.
【考點精析】認真審題,首先需要了解列表法與樹狀圖法(當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率),還要掌握概率公式(一般地,如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初三(1)班部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動,收集整理數(shù)據(jù)后,老師將減壓方式分為五類,并繪制了圖1、圖2兩個不完整的統(tǒng)計圖,請根據(jù)圖中的信息解答下列問題.
(1)初三(1)班接受調(diào)查的同學(xué)共有多少名;
(2)補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中的“體育活動C”所對應(yīng)的圓心角度數(shù);
(3)若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生;老師想從5名同學(xué)中任選兩名同學(xué)進行交流,直接寫出選取的兩名同學(xué)都是女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是邊長為2的正方形,頂點A、C分別在x,y軸的正半軸上.點Q在對角線OB上,且QO=OC,連接CQ并延長CQ交邊AB于點P.則點P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在不透明的袋子中有四張標(biāo)著數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲. 小明畫出樹狀圖如圖所示:

小華列出表格如下:

第一次
第二次

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(4,2)

3

(1,3)

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

回答下列問題:
(1)根據(jù)小明畫出的樹形圖分析,他的游戲規(guī)則是,隨機抽出一張卡片后(填“放回”或“不放回”),再隨機抽出一張卡片;
(2)根據(jù)小華的游戲規(guī)則,表格中①表示的有序數(shù)對為;
(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認為誰獲勝的可能性大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O1 , ⊙O2的圓心在直線l上,⊙O1的半徑為2cm,⊙O2的半徑為3cm.O1O2=8cm,⊙O1以1cm/s的速度沿直線l向右運動,7s后停止運動.在此過程中,⊙O1和⊙O2沒有出現(xiàn)的位置關(guān)系是(
A.外切
B.相交
C.內(nèi)切
D.內(nèi)含

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于兩個相似三角形,如果沿周界按對應(yīng)點順序環(huán)繞的方向相同,那么稱這兩個三角形互為順相似;如果沿周界按對應(yīng)點順序環(huán)繞的方向相反,那么稱這兩個三角形互為逆相似.例如,如圖①,△ABC∽△A′B′C′,且沿周界ABCA與A′B′C′A′環(huán)繞的方向相同,因此△ACB和△A′B′C′互為順相似;如圖②,△ABC∽△A′B′C′,且沿周界ABCA與A′B′C′A′環(huán)繞的方向相反,因此△ACB和△A′B′C′互為逆相似.

(1)根據(jù)圖Ⅰ,圖Ⅱ和圖Ⅲ滿足的條件.可得下列三對相似三角形:①△ADE與△ABC;②△GHO與△KFO;③△NQP與△NMQ;其中,互為順相似的是;互為逆相似的是 . (填寫所有符合要求的序號).

(2)如圖③,在銳角△ABC中,∠A<∠B<∠C,點P在△ABC的邊上(不與點A,B,C重合).過點P畫直線截△ABC,使截得的一個三角形與△ABC互為逆相似.請根據(jù)點P的不同位置,探索過點P的截線的情形,畫出圖形并說明截線滿足的條件,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某海域內(nèi)有一艘輪船發(fā)生故障,海事救援船接到求救信號后立即從港口出發(fā)沿直線勻速前往救援,與故障漁船會合后立即將其拖回.如圖折線段O﹣A﹣B表示救援船在整個航行過程中離港口的距離y(海里)隨航行時間x(分鐘)的變化規(guī)律.拋物線y=ax2+k表示故障漁船在漂移過程中離港口的距離y(海里)隨漂移時間x(分鐘)的變化規(guī)律.已知救援船返程速度是前往速度的 .根據(jù)圖象提供的信息,解答下列問題:
(1)救援船行駛了海里與故障船會合;
(2)求該救援船的前往速度;
(3)若該故障漁船在發(fā)出求救信號后40分鐘內(nèi)得不到營救就會有危險,請問救援船的前往速度每小時至少是多少海里,才能保證故障漁船的安全.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校對全部900名學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式進行調(diào)查,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有人,條形統(tǒng)計圖中“了解”部分所對應(yīng)的人數(shù)是人;
(2)扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為°;
(3)若沒有達到“了解”或“基本了解”的同學(xué)必須重新接受安全教育。 請根據(jù)上述調(diào)查結(jié)果估計我校學(xué)生中必須重新接受安全教育的總?cè)藬?shù)大約為人;
(4)若從對校園安全知識達到“了解”程度的3個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請直接寫出恰好抽到1個男生和1個女生的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,DA∥BC,tan∠DBA= ,若CD=2 ,則線段BC的長為

查看答案和解析>>

同步練習(xí)冊答案