某同學用兩個完全相同有一個角為60°的直角三角尺重疊在一起(如圖)固定△ABC不動,將△DEF沿線段AB向右平移,當D移至AB中點時(如圖②).
(1)求證:△ACD≌△DFB;
(2)猜想四邊形CDBF的形狀,并說明理由.

【答案】分析:(1)根據(jù)已知可以得出∠CAB=∠FDE,AC=DF,BD=AD,即可得出△ACD≌△DFB;
(2)根據(jù)直角三角形斜邊上的中線等于斜邊的一半和平移的性質(zhì),即可得到該四邊形的四條邊都相等,則它是一個菱形;
解答:(1)證明:∵兩個完全相同有一個角為60°的直角三角尺重疊在一起(如圖②)固定△ABC不動,將△DEF沿線段AB向右平移,
∴∠CAB=∠FDE=60°,AC=DF,
∵D移至AB中點時,
∴BD=AD,
∴在△ACD與△DFB中,
,
∴△ACD≌△DFB;

(2)菱形.
理由:∵在直角三角形ABC中,AD=BD,
∴CD=AD=BD,
根據(jù)平移的性質(zhì),圖形平移前后對應線段相等,對應點平移距離相等,得到CF=BD,BF=CD,
∴CF=BD=BF=CD,
∴四邊形CDBF是菱形;
點評:此題主要考查了菱形的判定,綜合運用直角三角形的性質(zhì)和平移的性質(zhì)進行分析計算,考查學生綜合運用數(shù)學知識的能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)某同學用兩個完全相同有一個角為60°的直角三角尺重疊在一起(如圖)固定△ABC不動,將△DEF沿線段AB向右平移,當D移至AB中點時(如圖②).
(1)求證:△ACD≌△DFB;
(2)猜想四邊形CDBF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

黃陂某中學要從學校演講比賽一等獎獲得者甲、乙兩名同學中,推薦一名參加市演講比賽,為此設計一個摸球和轉(zhuǎn)盤游戲,如圖,在一個暗箱中裝有2個完全相同的球,分別標有數(shù)字“1”、“2”;另有一個被三等分的轉(zhuǎn)盤,分別寫有“1”、“2”、“3”.從暗箱中隨機摸出一球,并且轉(zhuǎn)動轉(zhuǎn)盤一次,將摸出小球上的數(shù)字與轉(zhuǎn)盤轉(zhuǎn)出的數(shù)字相加精英家教網(wǎng),若和為奇數(shù),則甲同學去參賽,否則乙同學去參賽.
(1)用樹形圖或列表法表示兩次游戲所得數(shù)字和的所有結(jié)果;
(2)求甲同學去參賽的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某同學用兩個完全相同的直角三角尺重疊在一起(如圖①)固定△ABC不動,將△DEF沿線段AB向右平移.
(1)若∠A=60°,斜邊AB=4,設AD=x,兩個直角三角尺重疊部分的面積為y,試求出y與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)當D移至到什么位置時.四邊形CDBF是菱形,并加以證明;
(3)當D移至AB中點時(如圖②),四邊形CDBF能否為正方形?若能,請你說明理由;若不能,請你添加一個條件說明四邊形CDBF為正方形?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某同學用兩個完全相同有一個角為60°的直角三角尺重疊在一起(如圖)固定△ABC不動,將△DEF沿線段AB向右平移,當D移至AB中點時(如圖②).
(1)求證:△ACD≌△DFB;
(2)猜想四邊形CDBF的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案