D
分析:正八邊形的每個內(nèi)角為:180°-360°÷8=135°,分別計算出正三角形,正方形,正五邊形,正六邊形的每個內(nèi)角的度數(shù).利用“圍繞一點拼在一起的多邊形的內(nèi)角加在一起恰好組成一個周角”作為相等關(guān)系列出多邊形個數(shù)之間的數(shù)量關(guān)系,利用多邊形的個數(shù)都是正整數(shù)可推斷出能和正八邊形一起密鋪的多邊形是正四邊形.
解答:正八邊形的每個內(nèi)角為180°-360°÷8=135°,
A、正三角形的每個內(nèi)角60°,得135m+60n=360°,n=6-94m,顯然m取任何正整數(shù)時,n不能得正整數(shù),故不能鋪滿;
B、正六邊形的每個內(nèi)角是120度,得135m+120n=360°,n=3-98m,顯然m取任何正整數(shù)時,n不能得正整數(shù),故不能鋪滿.
C、正五邊形每個內(nèi)角是180°-360°÷5=108°,得108m+135n=360°,m取任何正整數(shù)時,n不能得正整數(shù),故不能鋪滿;
D、正四邊形的每個內(nèi)角是90°,得90°+2×135°=360°,所以能鋪滿;
故選D.
點評:本題考查平面密鋪的知識,注意掌握幾何圖形鑲嵌成平面的關(guān)鍵是:圍繞一點拼在一起的多邊形的內(nèi)角加在一起恰好組成一個周角.需注意正多邊形內(nèi)角度數(shù)=180°-360°÷邊數(shù).