【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷(xiāo)階段發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)是25元時(shí),每天的銷(xiāo)售量為250件,銷(xiāo)售單價(jià)每上漲1元,每天的銷(xiāo)售量就減少10件.
(1)寫(xiě)出商場(chǎng)銷(xiāo)售這種文具,每天所得的銷(xiāo)售利潤(rùn)(元)與銷(xiāo)售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷(xiāo)售單價(jià)為多少元時(shí),該文具每天的銷(xiāo)售利潤(rùn)最大;最大值是多少?
【答案】(1)w=-10x2+700x-10000;(2)當(dāng)單價(jià)為35元時(shí),該文具每天的利潤(rùn)最大;最大值為2250.
【解析】
試題(1)因?yàn)殇N(xiāo)售單價(jià)元,所以根據(jù)當(dāng)銷(xiāo)售單價(jià)是25元時(shí),每天的銷(xiāo)售量為250件,銷(xiāo)售單價(jià)每上漲1元,每天的銷(xiāo)售量就減少10件.可表示出銷(xiāo)售量=250-10(x-25)件,然后根據(jù)每天所得的銷(xiāo)售利潤(rùn)(元)=一件的利潤(rùn)×銷(xiāo)售量,代入化簡(jiǎn)即可;
(2)利用二次函數(shù)的性質(zhì),將(1)中的函數(shù)關(guān)系式配方即可得出結(jié)論.
試題解析:(1)由題意得,銷(xiāo)售量=250-10(x-25)=-10x+500,
則w=(x-20)(-10x+500)
=-10x2+700x-10000;
(2)w=-10x2+700x-10000=-10(x-35)2+2250.
故當(dāng)單價(jià)為35元時(shí),該文具每天的利潤(rùn)最大;最大值為2250 10分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是AB、AD的中點(diǎn),連接AC、EC、EF、FC,且EC⊥EF.
(1)求證:△AEF∽△BCE;
(2)若AC=2,求AB的長(zhǎng);
(3)在(2)的條件下,△ABC的外接圓圓心與△CEF的外接圓圓心之間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題8分)已知△ABC的兩邊AB、AC的長(zhǎng)恰好是關(guān)于x的方程x2+(2k+3)x+k2+3k+2=0的兩個(gè)實(shí)數(shù)根,第三邊BC的長(zhǎng)為5
(1) 求證:AB≠AC
(2) 如果△ABC是以BC為斜邊的直角三角形,求k的值
(3) 填空:當(dāng)k=________時(shí),△ABC是等腰三角形,△ABC的周長(zhǎng)為_(kāi)_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷(xiāo)售一種玩具,每件的進(jìn)貨價(jià)為40元.經(jīng)市場(chǎng)調(diào)研,當(dāng)該玩具每件的銷(xiāo)售價(jià)為50元時(shí),每天可銷(xiāo)售200件;當(dāng)每件的銷(xiāo)售價(jià)每增加1元,每天的銷(xiāo)售數(shù)量將減少10件,現(xiàn)該商店決定漲價(jià)銷(xiāo)售.
(1)當(dāng)每件的銷(xiāo)售價(jià)為53元,該玩具每天的銷(xiāo)售數(shù)量為 件;
(2)若商店銷(xiāo)售該玩具每天獲利2000元,每件玩具銷(xiāo)售價(jià)應(yīng)定為多少元?
(3)若該玩具每件銷(xiāo)售價(jià)不低于57元,同時(shí),每天的銷(xiāo)售量至少20件,求每件的銷(xiāo)售價(jià)定為多少元時(shí),銷(xiāo)售該玩具每天獲得的利潤(rùn)w最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A'B'C,M是BC的中點(diǎn),P是A'B'的中點(diǎn),連接PM.若BC=2,∠BAC=30°,則線(xiàn)段PM的最大值是( 。
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,點(diǎn)P是內(nèi)切圓的圓心.將沿x軸的正方向作無(wú)滑動(dòng)滾動(dòng),使它的三邊依次與x軸重合,第一次滾動(dòng)后圓心為,第二次滾動(dòng)后圓心為,…,依此規(guī)律,第2019次滾動(dòng)后,內(nèi)切圓的圓心的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為⊙O外一點(diǎn),PA、PB分別切⊙O于A、B,CD切⊙O于點(diǎn)E,分別交PA,PB于點(diǎn)C、D,若△PCD的周長(zhǎng)為24,⊙O的半徑是5,則點(diǎn)P到圓心O的距離_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是等邊內(nèi)一點(diǎn),,將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)60°得,連接,若,則的度數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】運(yùn)動(dòng)員將小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度h(m)與它的飛行時(shí)間t(s)滿(mǎn)足二次函數(shù)關(guān)系,t與h的幾組對(duì)應(yīng)值如下表所示.
t(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
h(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(1)求h與t之間的函數(shù)關(guān)系式(不要求寫(xiě)t的取值范圍);
(2)求小球飛行3s時(shí)的高度;
(3)問(wèn):小球的飛行高度能否達(dá)到22m?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com