【題目】某數(shù)學復習課上,數(shù)學老師用幾何畫板上畫出二次函數(shù)yax2+bx+ca≠0)圖象如圖所示,四名同學根據(jù)圖象,說出下列結論:李佳:abc0:王寧:2ab0:孫浩:b24ac一帆:點(﹣3,y1),(1y2)都在拋物線上,則有y1y2,你認為其中正確的結論有( 。

A.4B.3C.2D.1

【答案】B

【解析】

根據(jù)二次函數(shù)的性質結合圖象逐項分析可得解.

解:對稱軸在左側,故ab同號,c0

故李佳:abc0正確;

函數(shù)對稱軸:x<﹣1,解得:2ab,

故王寧:2ab0正確;

函數(shù)和x軸有兩個交點,b24ac0

故孫浩:b24ac正確;

x=﹣3時,y10,而x1時,y20,

故一帆:點(﹣3y1),(1y2)都在拋物線上,則有y1y2錯誤;

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于點,B兩點,與y軸交于點,拋物線的頂點在直線上.

1)求拋物線的解析式;

2)點P為第一象限內拋物線上的一個動點,過點P軸交BC于點Q,求線段PQ長度的最大值,及此時點P的坐標;

3)點Mx軸上,點N在拋物線的對稱軸上,若以點MN,CB為頂點的四邊形是平行四邊形,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐探究幾何元素之間的關系

問題情境:四邊形ABCD中,點O是對角線AC的中點,點E是直線AC上的一個動點(點E與點C,O,A都不重合),過點A,C分別作直線BE的垂線,垂足分別為F,G,連接OFOG.

1)初步探究:

如圖1,已知四邊形ABCD是正方形,且點E在線段OC上,求證

2)深入思考:請從下面A,B兩題中任選一題作答,我選擇_______.

A.探究圖1OFOG的數(shù)量關系并說明理由;

B.如圖2,已知四邊形ABCD為菱形,且點EAC的延長線上,其余條件不變,探究OFOG的數(shù)量關系并說明理由;

3)拓展延伸:請從下面AB兩題中任選一題作答,我選擇_______.

如圖3,已知四邊形ABCD為矩形,且,.

A.E在直線AC上運動的過程中,若,則FG的長為________.

B.E在直線AC上運動的過程中,若,則FG的長為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,EAD的中點,已知DEF的面積為1,則平行四邊形ABCD的面積為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小麗和小華想利用摸球游戲決定誰去參加市里舉辦的書法比賽,游戲規(guī)則是:在一個不透明的袋子里裝有除數(shù)字外完全相同的4個小球,上面分別標有數(shù)字2,34,5.一人先從袋中隨機摸出一個小球,另一人再從袋中剩下的3個小球中隨機摸出一個小球.若摸出的兩個小球上的數(shù)字和為偶數(shù),則小麗去參賽;否則小華去參賽.

1)用列表法或畫樹狀圖法,求小麗參賽的概率.

2)你認為這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3x軸于A,B兩點,交y軸于點C,點D為拋物線的頂點,點C關于拋物線的對稱軸的對稱點為E,點G,F分別在xy軸上,則四邊形EDFG周長的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABDCABAD,對角線ACBD交于點O,AC平分∠BAD,過點CCEABAB的延長線于點E,連接OE.

1)求證:四邊形ABCD是菱形;(2)若AE5,OE3,求線段CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標平面xOy內,點A6,0)、C(﹣4,0),過點A作直線AB,交y軸的正半軸于點B,且AB10,點P是直線AB上的一個動點.

1)求點B的坐標和直線AB的表達式;

2)若以A、P、C為頂點的三角形與AOB相似,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應,決定在小區(qū)內安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.

(1)求溫馨提示牌和垃圾箱的單價各是多少元?

(2)該小區(qū)至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?

查看答案和解析>>

同步練習冊答案