【題目】已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本題中的角均為大于0°且小于等于180°的角).
(1)如圖1,當OB、OC重合時,求∠EOF的度數(shù);
(2)當∠COD從圖1所示位置繞點O順時針旋轉(zhuǎn)n°(0<n<90)時,∠AOE﹣∠BOF的值是否為定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,請說明理由.
(3)當∠COD從圖1所示位置繞點O順時針旋轉(zhuǎn)n°(0<n<180)時,滿足∠AOD+∠EOF=6∠COD,則n=__________.
【答案】(1)70°;(2)∠AOE﹣∠BOF的值是為定值30°,理由見解析;(3)30
【解析】
(1)首先根據(jù)角平分線的定義求得∠EOB和∠COF的度數(shù),然后根據(jù)∠EOF=∠EOB+∠COF求解;
(2)解法與(1)相同,只是∠AOC=∠AOB+n°,∠BOD=∠COD+n°;
(3)利用n表示出∠AOD,求得∠EOF的度數(shù),根據(jù)∠AOD+∠EOF=6∠COD列方程求解.
解:(1)∵OE平分∠AOC,OF平分∠BOD,
∴∠EOB=∠AOB=×100°=50°,∠COF=∠COD=×40°=20°,
∴∠EOF=∠EOB+∠COF=50°+20°=70°;
(2)∠AOE﹣∠BOF的值是定值,理由是:∠AOC=∠AOB+n°,∠BOD=∠COD+n°,
∵OE平分∠AOC,OF平分∠BOD,
∴∠AOE=∠AOC=(100°+n°),∠BOF=∠BOD=(40°+n°),
∴∠AOE﹣∠BOF=(100°+n°)﹣(40°+n°)=30°;
(3)∠AOD=∠AOB+∠COD+n°=100°+40°+n°=140°+n°,
∠EOF=∠EOC+∠COF=∠EOC+∠COD﹣∠DOF=(100°+n°)+40°﹣(40°+n°)=70°,
∵∠AOD+∠EOF=6∠COD,∴(140+n)+70°=6×40,∴n=30.故答案是:30.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,AB=AC=BC=6.點P射線BA上一點,點Q是AC的延長線上一點,且BP=CQ,連接PQ,與直線BC相交于點D.
(1)如圖①,當點P為AB的中點時,求CD的長;
(2)如圖②,過點P作直線BC的垂線,垂足為E,當點P,Q分別在射線BA和AC的延長線上任意地移動過程中,線段BE,DE,CD中是否存在長度保持不變的線段?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,D,E為BC上兩點,過點D,E分別作AC,AB的垂線,兩垂線交于點M,垂足分別為G,F(xiàn),若∠AED=∠BAD,AB=AC=2,則下列說法中不正確的是( 。
A.△CAE∽△BDA
B.
C.BD?CE=4
D.BE=BF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于點A(﹣ , 0),點B(2,0),與y軸交于點C(0,1),連接BC.
(1)求拋物線的解析式;
(2)N為拋物線上的一個動點,過點N作NP⊥x軸于點P,設(shè)點N的橫坐標為t(﹣),求△ABN的面積s與t的函數(shù)解析式;
(3)若0<t<2且t≠0時,△OPN∽△COB,求點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學最重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.其中卷第九勾股,主要講述了以測量問題為中心的直角三角形三邊互求的關(guān)系.其中記載:“今有邑,東西七里,南北九里,各中開門,出東門一十五里有木,問:出南門幾何步而見木?”
譯文:“今有一座長方形小城,東西向城墻長7里,南北向城墻長9里,各城墻正中均開一城門.走出東門15里處有棵大樹,問走出南門多少步恰好能望見這棵樹?”(注:1里=300步)
你的計算結(jié)果是:出南門 步而見木.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)0.36+(-7.4)+0.3+(-0.6)+0.64;(2)3+(-2)+5+(-8);
(3)(-103)+(+1)+(-97)+(+100)+(-1);
(4)(-2)+(-0.38)+(-)+(+0.38);
(5)(-9)+15+(-3)+(-22.5)+(-15);
(6)[(+)+(-3.5)+(-6)]+[(+2.5)+(+6)+(+)].
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1的解析表達式為:y=﹣3x+3,且l1與x軸交于點D,直線l2經(jīng)過點A,B,直線l1,l2交于點C.根據(jù)圖中信息:
(1)求直線l2的解析表達式;
(2)求△ADC的面積;
(3)在直線l2上存在異于點C的另一點P,使得△ADP與△ADC的面積相等,求出點P的坐標;
(4)若點H為坐標平面內(nèi)任意一點,在坐標平面內(nèi)是否存在這樣的點H,使以A、D、C、H為頂點的四邊形是平行四邊形?若存在,請直接寫出點H的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人以相同路線前往距離單位10km的培訓中心參加學習.圖中l甲、l乙分別表示甲、乙兩人前往目的地所走的路程S(km)隨時間t(分)變化的函數(shù)圖象.以下說法:
①乙比甲提前12分鐘到達; ②甲的平均速度為15千米/小時;
③乙走了8km后遇到甲; ④乙出發(fā)6分鐘后追上甲.
其中正確的有_____________(填所有正確的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com