【題目】對(duì)x,y定義一種新運(yùn)算T,規(guī)定:T(x,y)=(其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T(0,1)==b.
(1)已知T(2,1)=
①求a,b的值;
②若關(guān)于m的不等式組恰好有3個(gè)整數(shù)解,求p的取值范圍;
(2)若T(x,y)=T(y,x)對(duì)任意有理數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應(yīng)滿足怎樣的關(guān)系式?
【答案】(1)①a=2,b=1;②;(2)a=b.
【解析】
(1)①已知兩對(duì)值代入T中計(jì)算求出a與b的值;
②根據(jù)題中新定義化簡(jiǎn)已知不等式,根據(jù)不等式組恰好有3個(gè)整數(shù)解,求出p的范圍即可;
(2)由T(x,y)=T(y,x)列出關(guān)系式,整理后即可確定出a與b的關(guān)系式.
解:(1)①根據(jù)題意得:T(2,1)= ①,②,
聯(lián)立①②,解得:a=2,b=1;
②根據(jù)題意得:,
由①得:;
由②得:,
∴不等式組的解集為,
∵不等式組恰好有3個(gè)整數(shù)解,即m=-1,0,1,.
∴,
解得:;
(2)由T(x,y)=T(y,x),得到,
整理得:(x2y2)(2ab)=0,
∵T(x,y)=T(y,x)對(duì)任意實(shí)數(shù)x,y都成立,
∴2ab=0,即a=b.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃開(kāi)發(fā)、兩種戶型樓盤(pán),設(shè)戶型套,戶型套,且兩種戶型的函數(shù)關(guān)系滿足,經(jīng)市場(chǎng)調(diào)研,每套戶型的成本價(jià)和預(yù)售價(jià)如下表所示:
樓盤(pán)戶型 | ||
成本價(jià)(萬(wàn)元/套) | 60 | 80 |
預(yù)售價(jià)(萬(wàn)元/套) | 80 | 120 |
若公司最多投入開(kāi)發(fā)資金為14000萬(wàn)元,所獲利潤(rùn)為萬(wàn)元,
(1)求與的函效關(guān)系式和自變量的取值范圍
(2)售完這批樓盤(pán),公司所獲得的最大利潤(rùn)是多少?
(3)公司在實(shí)際銷(xiāo)售過(guò)程中,其他條件不變,戶型每套銷(xiāo)售價(jià)格提高()萬(wàn)元,且限定戶型最多開(kāi)發(fā)120套,則公司如何建房,利潤(rùn)最大?(注:利潤(rùn)=售價(jià)-成本.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在8×8的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1個(gè)單位長(zhǎng)度,△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上.
(1)將△ABC經(jīng)平移后得到△A′B′C′,點(diǎn)A的對(duì)應(yīng)點(diǎn)是點(diǎn)A′.畫(huà)出平移后所得的△A′B′C′;
(2)連接AA′、CC′,則四邊形AA′C′C的面積為 ________.
(3)若連接AA′,BB′,則這兩條線段之間的關(guān)系是 ;
(4)△ABC的高CD所在直線必經(jīng)過(guò)圖中的一個(gè)格點(diǎn)點(diǎn)P,在圖中標(biāo)出點(diǎn)P.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程 有兩個(gè)不相等的實(shí)數(shù)根,
(1)求m的取值范圍;
(2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的倒數(shù)和等于0?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)P(3,m),Q(1,3).
(1)求反函數(shù)的函數(shù)關(guān)系式;
(2)在給定的直角坐標(biāo)系(如圖)中,畫(huà)出這兩個(gè)函數(shù)的大致圖象;
(3)當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果店計(jì)劃進(jìn)A,B兩種水果共140千克,這兩種水果的進(jìn)價(jià)和售價(jià)如表所示
進(jìn)價(jià)元千克 | 售價(jià)元千克 | |
A種水果 | 5 | 8 |
B種水果 | 9 | 13 |
若該水果店購(gòu)進(jìn)這兩種水果共花費(fèi)1020元,求該水果店分別購(gòu)進(jìn)A,B兩種水果各多少千克?
在的基礎(chǔ)上,為了迎接春節(jié)的來(lái)臨,水果店老板決定把A種水果全部八折出售,B種水果全部降價(jià)出售,那么售完后共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A點(diǎn)的坐標(biāo)為(﹣1,5),B點(diǎn)的坐標(biāo)為(3,3),C點(diǎn)的坐標(biāo)為(5,3),D點(diǎn)的坐標(biāo)為(3,﹣1),小明發(fā)現(xiàn):線段AB與線段CD存在一種特殊關(guān)系,即其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可以得到另一條線段,你認(rèn)為這個(gè)旋轉(zhuǎn)中心的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(m+1)x+ (m2+1)=0有實(shí)數(shù)根.
(1)求m的值;
(2)先作y=x2﹣(m+1)x+ (m2+1)的圖象關(guān)于x軸的對(duì)稱圖形,然后將所作圖形向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,寫(xiě)出變化后圖象的解析式;
(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點(diǎn)時(shí),求n2﹣4n的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在中,已知分別是上的兩點(diǎn),且..
求梯形的面積;
如圖②,有一梯形與梯形重合,固定,將梯形向右運(yùn)動(dòng),當(dāng)點(diǎn)D與點(diǎn)C重合時(shí)梯形停止運(yùn)動(dòng);
①若某時(shí)段運(yùn)動(dòng)后形成的四邊形中,求運(yùn)動(dòng)路程的長(zhǎng),并求此時(shí)的值;
②設(shè)運(yùn)動(dòng)中的長(zhǎng)度為,試用含的代數(shù)式表示梯形與重合部分面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com