如圖,在⊙O中,弦AB與DC相交于點(diǎn)E,AB=CD.
(1)求證:△AEC≌△DEB;
(2)點(diǎn)B與點(diǎn)C關(guān)于直線OE對(duì)稱(chēng)嗎?試說(shuō)明理由.

【答案】分析:(1)要證△AEC≌△DEB,由于AB=CD,根據(jù)等弦所對(duì)的弧相等得=,根據(jù)等量減等量還是等量,得=,由等弧對(duì)等弦得BD=CA,由圓周角定理得,∠ACE=∠DBE,∠AEC=∠DEB,即可根據(jù)AAS判定;
(2)由△AEC≌△DEB得,BE=CE,得到點(diǎn)E在直線BC的中垂線上,連接BO,CO,BO和CO是半徑,則BO和CO相等,即點(diǎn)O在線段BC的中垂線上,亦即直線EO是線段BC的中垂線,所以點(diǎn)B與點(diǎn)C關(guān)于直線OE對(duì)稱(chēng).
解答:(1)證明:∵AB=CD,
=
-=-
=
∴BD=CA.
在△AEC與△DEB中,∠ACE=∠DBE,∠AEC=∠DEB,
∴△AEC≌△DEB(AAS).

(2)解:點(diǎn)B與點(diǎn)C關(guān)于直線OE對(duì)稱(chēng).
理由如下:如圖,連接OB、OC、BC.
由(1)得BE=CE.
∴點(diǎn)E在線段BC的中垂線上,
∵BO=CO,
∴點(diǎn)O在線段BC的中垂線上,
∴直線EO是線段BC的中垂線,
∴點(diǎn)B與點(diǎn)C關(guān)于直線OE對(duì)稱(chēng).
點(diǎn)評(píng):本題利用了圓周角定理、等弦所對(duì)的弧相等,等弧對(duì)等弦、全等三角形的判定和性質(zhì)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在⊙O中,弦AD=BC.求證:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖,在⊙O中,弦BC∥半徑OA,AC與OB相交于M,∠C=20°,則∠AMB的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在⊙M中,弦AB所對(duì)的圓心角為120度,已知圓的半徑為2cm,并建立如圖所示的直角坐精英家教網(wǎng)標(biāo)系.
(1)求圓心M的坐標(biāo);
(2)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(3)設(shè)點(diǎn)P是⊙M上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAB為Rt△PAB時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在⊙O中,弦AB=BC=CD,且∠ABC=140°,則∠AED=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在⊙O中,弦AB與CD相交于點(diǎn)P,連接AC、DB.
(1)求證:△PAC∽△PDB;
(2)當(dāng)
AC
DB
為何值時(shí),
S△PAC
S△PDB
=4?

查看答案和解析>>

同步練習(xí)冊(cè)答案