【題目】如圖,在中,,是角平分線,平分于點(diǎn),經(jīng)過兩點(diǎn)的于點(diǎn),交于點(diǎn),恰為的直徑.

(1)求證:相切;

(2)當(dāng)時(shí),求的半徑.

【答案】(1)證明見解析;(2)

【解析】

(1)連接OM,證明OMBE,再結(jié)合等腰三角形的性質(zhì)說明AEBE,進(jìn)而證明OMAE;

(2)結(jié)合已知求出AB,再證明△AOM∽△ABE,利用相似三角形的性質(zhì)計(jì)算.

(1)連接OM,則OM=OB,

∴∠1=2,

BM平分∠ABC,

∴∠1=3,

∴∠2=3,

OMBC,

∴∠AMO=AEB,

在△ABC中,AB=AC,AE是角平分線,

AEBC,

∴∠AEB=90°,

∴∠AMO=90°,

OMAE,

∵點(diǎn)M在圓O上,

AE與⊙O相切;

(2)在△ABC中,AB=AC,AE是角平分線,

BE=BC,∠ABC=C,

BC=4,cosC=

BE=2,cosABC=

在△ABE中,∠AEB=90°,

AB==6,

設(shè)⊙O的半徑為r,則AO=6-r,

OMBC,

∴△AOM∽△ABE

∴∴,

解得,

的半徑為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接國慶節(jié),某商店購進(jìn)了一批成本為每件30元的紀(jì)念商品.經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量(件與銷售單價(jià)(元滿足一次函數(shù)關(guān)系,其圖象如圖所示.

1)求該商品每天的銷售量與銷售單價(jià)的函數(shù)關(guān)系式;

2)若商店按不低于成本價(jià),且不高于60元的單價(jià)銷售,則銷售單價(jià)定為多少,才能使銷售該商品每天獲得的利潤(元最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)的居民用電,按照高峰時(shí)段和空閑時(shí)段規(guī)定了不同的單價(jià).某戶5月份高峰時(shí)段用電量是空閑時(shí)段用電量2倍,6月份高峰時(shí)段用電量比5月份高峰時(shí)段用電量少50%,結(jié)果6月份的用電量和5月份的用電量相等,但6月份的電費(fèi)卻比5月份的電費(fèi)少25%,求該地區(qū)空閑時(shí)段民用電的單價(jià)比高峰時(shí)段的用電單價(jià)低的百分率是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊ABC,頂點(diǎn)B00),C20),規(guī)定把ABC先沿x軸繞著點(diǎn)C順時(shí)針旋轉(zhuǎn),使點(diǎn)A落在x軸上,稱為一次變換,再沿x軸繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)B落在x軸上,稱為二次變換,經(jīng)過連續(xù)2018次變換后,頂點(diǎn)A的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖有一座拋物線形拱橋,橋下面在正常水位是AB20m,水位上升3m就達(dá)到警戒線CD,這是水面寬度為10m

1)在如圖的坐標(biāo)系中求拋物線的解析式。

(2)若洪水到來時(shí),水位以每小時(shí)0.2m的速度上升,從警戒線開始,再持續(xù)多少小時(shí)才能到拱橋頂?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線yx0)經(jīng)過OAB的頂點(diǎn)AOB的中點(diǎn)CABx軸,點(diǎn)A的坐標(biāo)為(23),BEx軸,垂足為E

1)確定k的值:   

2)計(jì)算OAB的面積;

3)若點(diǎn)D3b)在雙曲線yx0)上,直線AD的解析式為ymx+n,請直接寫出不等式mx+n的解集:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,DC為⊙O的切線,DEAB,垂足為點(diǎn)E,交⊙O于點(diǎn)F,弦ACDE于點(diǎn)P,連接CF

1)求證:∠DPC=∠PCD

2)若AP2,填空:

①當(dāng)∠CAB   時(shí),四邊形OBCF是菱形;

②當(dāng)AC2AE時(shí),OB   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,邊上一動(dòng)點(diǎn)(點(diǎn)與點(diǎn)不重合),聯(lián)結(jié),過點(diǎn)交邊于點(diǎn)

1)如圖,當(dāng)時(shí),求的長;

2)設(shè),求關(guān)于的函數(shù)解析式并寫出函數(shù)定義域;

3)把沿直線翻折得,聯(lián)結(jié),當(dāng)是等腰三角形時(shí),直接寫出的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,上一點(diǎn),連接

1)如圖1,若,延長線上一點(diǎn),垂直,求證:

2)過點(diǎn),為垂足,連接并延長交于點(diǎn).

①如圖2,若,求證:

②如圖3,若的中點(diǎn),直接寫出的值(用含的式子表示)

查看答案和解析>>

同步練習(xí)冊答案