如圖,等腰三角形與正三角形的形狀有著差異,我們把它與正三角形的接近程度稱(chēng)為等腰三角形的“正度”,在研究“正度”時(shí),應(yīng)符合下面四個(gè)條件:①“正度”的值是非負(fù)數(shù);②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.
可用表示等腰三角形的“正度”,的值越小,α越接近60°,表示等腰三角形越接近正三角形,且當(dāng)兩個(gè)等腰三角形相似時(shí),它們的底角相等,顯然,它們的“正度”也相等,當(dāng)α=60°時(shí),
而如果用表示等腰三角形的“正度”,就不符合要求,因?yàn)榇藭r(shí)正三角形的正度是1!
解答下列問(wèn)題:
甲同學(xué)認(rèn)為:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同學(xué)認(rèn)為:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
(1)他們的說(shuō)法合理嗎?為什么?
(2)對(duì)你認(rèn)為不合理的方案加以改進(jìn),使其合理;
(3)請(qǐng)你再給出一種衡量等腰三角形“正度”的合理的表達(dá)式,并說(shuō)明理由.

【答案】分析:(1)將甲乙兩同學(xué)的推測(cè)進(jìn)行推理,若代入特殊值不成立,則推理不成立.
(2)對(duì)同學(xué)甲的方案可改為用 等(k為正數(shù))來(lái)表示“正度”.
(3)還可用|α-60°|,|β-60°|,|α+β-120°|,等來(lái)表示“正度”.
解答:解:(1)同學(xué)乙的方案較為合理.
因?yàn)閨α-β|的值越小,α與β越接近60°,
因而該等腰三角形越接近于正三角形,且能保證相似三角形的“正度”相等.
同學(xué)甲的方案不合理,不能保證相似三角形的“正度”相等.
如:邊長(zhǎng)為4,4,2和邊長(zhǎng)為8,8,4的兩個(gè)等腰三角形相似,但|2-4|=2≠|(zhì)4-8|=4.
(2)對(duì)同學(xué)甲的方案可改為用 ,等(k為正數(shù))來(lái)表示“正度”.
(3)還可用|α-60°|,|β-60°|,|α+β-120°|,等來(lái)表示“正度”.
點(diǎn)評(píng):本題考查了相似三角形的應(yīng)用、等腰三角形的性質(zhì)及解直角三角形的知識(shí),此題是一道開(kāi)放性問(wèn)題,體現(xiàn)了探索發(fā)現(xiàn)的過(guò)程:發(fā)現(xiàn)問(wèn)題,作出假設(shè),進(jìn)行驗(yàn)證,加以證明.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(創(chuàng)新學(xué)習(xí))如圖,等腰三角形與正三角形的形狀有差異,我們把等腰三角形與正三角形的接近程度稱(chēng)為“正度”.在研究“正度”時(shí),應(yīng)保證相似三角形的“正度”相等.
精英家教網(wǎng)
設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.要求“正度”的值是非負(fù)數(shù).
同學(xué)甲認(rèn)為:可用式子|a-b|來(lái)表示“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
同學(xué)乙認(rèn)為:可用式子|α-β|來(lái)表示“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
探究:(1)他們的方案哪個(gè)較合理,為什么?
(2)對(duì)你認(rèn)為不夠合理的方案,請(qǐng)加以改進(jìn)(給出式子即可);
(3)請(qǐng)?jiān)俳o出一種衡量“正度”的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等腰三角形與正三角形的形狀有著差異,我們把它與正三角形的接近程度稱(chēng)為等腰三角形的“正度”,在研究“正度”時(shí),應(yīng)符合下面四個(gè)條件:①“正度”的值是非負(fù)數(shù);②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.
可用|sinα-
3
2
|
表示等腰三角形的“正度”,|sinα-
3
2
|
的值越小,α越接近60°,表示等腰三角形越接近正三角形,且當(dāng)兩個(gè)等腰三角形相似時(shí),它們的底角相等,顯然,它們的“正度”|sinα-
3
2
|
也相等,當(dāng)α=60°時(shí),|sinα-
3
2
|=0

而如果用
a
b
表示等腰三角形的“正度”,就不符合要求,因?yàn)榇藭r(shí)正三角形的正度是1!
解答下列問(wèn)題:
甲同學(xué)認(rèn)為:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同學(xué)認(rèn)為:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
精英家教網(wǎng)(1)他們的說(shuō)法合理嗎?為什么?
(2)對(duì)你認(rèn)為不合理的方案加以改進(jìn),使其合理;
(3)請(qǐng)你再給出一種衡量等腰三角形“正度”的合理的表達(dá)式,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,等腰三角形與正三角形的形狀有差異,我們把等腰三角形與正三角形的接近程度稱(chēng)為“正度”.在研究“正度”時(shí),應(yīng)保證相似三角形的“正度”相等.

設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.要求“正度”的值是非負(fù)數(shù).
同學(xué)甲認(rèn)為:可用式子|a-b|來(lái)表示“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
同學(xué)乙認(rèn)為:可用式子|α-β|來(lái)表示“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
探究:(1)他們的方案哪個(gè)較合理,為什么?
(2)對(duì)你認(rèn)為不夠合理的方案,請(qǐng)加以改進(jìn)(給出式子即可);
(3)請(qǐng)?jiān)俳o出一種衡量“正度”的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:《27.2 相似三角形》2009年同步練習(xí)(解析版) 題型:解答題

(創(chuàng)新學(xué)習(xí))如圖,等腰三角形與正三角形的形狀有差異,我們把等腰三角形與正三角形的接近程度稱(chēng)為“正度”.在研究“正度”時(shí),應(yīng)保證相似三角形的“正度”相等.

設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.要求“正度”的值是非負(fù)數(shù).
同學(xué)甲認(rèn)為:可用式子|a-b|來(lái)表示“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
同學(xué)乙認(rèn)為:可用式子|α-β|來(lái)表示“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
探究:(1)他們的方案哪個(gè)較合理,為什么?
(2)對(duì)你認(rèn)為不夠合理的方案,請(qǐng)加以改進(jìn)(給出式子即可);
(3)請(qǐng)?jiān)俳o出一種衡量“正度”的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2003•安徽)(創(chuàng)新學(xué)習(xí))如圖,等腰三角形與正三角形的形狀有差異,我們把等腰三角形與正三角形的接近程度稱(chēng)為“正度”.在研究“正度”時(shí),應(yīng)保證相似三角形的“正度”相等.

設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.要求“正度”的值是非負(fù)數(shù).
同學(xué)甲認(rèn)為:可用式子|a-b|來(lái)表示“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
同學(xué)乙認(rèn)為:可用式子|α-β|來(lái)表示“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
探究:(1)他們的方案哪個(gè)較合理,為什么?
(2)對(duì)你認(rèn)為不夠合理的方案,請(qǐng)加以改進(jìn)(給出式子即可);
(3)請(qǐng)?jiān)俳o出一種衡量“正度”的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案