【題目】已知點 A 在函數(shù)y1=-x0)的圖象上,點 B 在直線 y2=kx+1+kk 為常數(shù),且 k≥0)上.若 A,B 兩點關(guān)于原點對稱,則稱點 A,B 為函數(shù) y1,y2 圖象上的一對友好點.請問這兩個函數(shù)圖象上的友好點對數(shù)的情況為(

A.1對或2B.只有1

C.只有2D.2對或3

【答案】A

【解析】

根據(jù)友好點的定義知,函數(shù)y1圖象上點Aa,-)關(guān)于原點的對稱點B-a,)一定位于直線y2上,即方程ka2-k+1a+1=0 有解,整理方程得(a-1)(ka-1=0,據(jù)此可得答案.

設(shè)Aa,-),

由題意知,點A關(guān)于原點的對稱點B-a)在直線y2=kx+1+k上,

=-ak+1+k,

整理,得:ka2-k+1a+1=0 ①,

即(a-1)(ka-1=0,

a-1=0ka-1=0

a=1ka-1=0,

k=0,則a=1,此時方程①只有1個實數(shù)根,即兩個函數(shù)圖象上的友好點只有1對;

k≠0,則a=1a=,此時方程①有2個實數(shù)根,即兩個函數(shù)圖象上的友好點2對,

綜上,這兩個函數(shù)圖象上的友好點對數(shù)情況為1對或2對,

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,AB=AD,連接BD,點E在AB上,且∠BDE=15°,DE=4,DC=2

(1)求BE的長;

(2)求四邊形DEBC的面積.

(注意:本題中的計算過程和結(jié)果均保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,CF為⊙O上兩點,且點C為弧BF的中點,過點CAF的垂線,AF的延長線于點E,AB的延長線于點D

1求證DE是⊙O的切線;

2如果半徑的長為3,tanD=AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,EF分別為BC,CD上的點,且AEBF,垂足為G

1)求證:AEBF;(2)若BE,AG2,求正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在開展學(xué)雷鋒社會實踐活動中,某校為了解全校1200名學(xué)生參加活動的情況,隨機調(diào)查了50名學(xué)生每人參加活動的次數(shù),并根據(jù)數(shù)據(jù)繪成條形統(tǒng)計圖如下:

)求這50個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

)根據(jù)樣本數(shù)據(jù),估算該校1200名學(xué)生共參加了多少次活動.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 AB 為⊙O 的直徑,BCAB B,且 BC=AB,D 為半圓⊙O 上的一點,連接 BD 并延長交半圓⊙O 的切線 AE E

1)如圖 1,若 CD=CB,求證:CD 是⊙O 的切線;

2)如圖 2,若 F 點在 OB 上,且CDDF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】興發(fā)服裝店老板用4500元購進一批某款T恤衫,由于深受顧客喜愛,很快售完,老板又用4950元購進第二批該款式T恤衫,所購數(shù)量與第一批相同,但每件進價比第一批多了9元.

1)第一批該款式T恤衫每件進價是多少元?

2)老板以每件120元的價格銷售該款式T恤衫,當(dāng)?shù)诙?/span>T恤衫售出時,出現(xiàn)了滯銷,于是決定降價促銷,若要使第二批的銷售利潤不低于650元,剩余的T恤衫每件售價至少要多少元?(利潤=售價進價)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠B=∠C30°,點OBC邊上一點,以點O為圓心、OB為半徑的圓經(jīng)過點A,與BC交于點D.

試說明AC與⊙O相切;

,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為m的大正方形,兩塊是邊長都為n的小正方形,五塊是長為m,寬為n的全等小矩形,且mn.(以上長度單位:cm

1)用含mn的代數(shù)式表示所有裁剪線(圖中虛線部分)的長度之和;

2)觀察圖形,發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為   ;

3)若每塊小矩形的面積為10cm2,四個正方形的面積和為58cm2,試求(m+n2的值.

查看答案和解析>>

同步練習(xí)冊答案