【題目】問(wèn)題提出:如圖,已知:線段AB,試在平面內(nèi)找到符合條件的所有點(diǎn)C,
使∠ACB=30°。(利用直尺和圓規(guī)作圖,保留作圖痕跡,不寫(xiě)作法).
嘗試解決:為了解決這個(gè)問(wèn)題,下面給出一種解題思路:先作出等邊三角形AOB,然后以點(diǎn)O 為圓心,OA長(zhǎng)為半徑作⊙O,則優(yōu)弧AB上的點(diǎn)即為所要求作的點(diǎn)(點(diǎn)A、B除外),根據(jù)對(duì)稱性,在AB的另一側(cè)符合條件的點(diǎn)C易得。請(qǐng)根據(jù)提示,完成作圖.
自主探索:在平面直角坐標(biāo)系中,已知點(diǎn)A(3,0)、B(-1,0),點(diǎn)C是y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)∠BCA=45°時(shí),點(diǎn)C的坐標(biāo)為 .
【答案】(1)如圖1,兩段優(yōu)弧(不含A、B兩端點(diǎn))為所作;見(jiàn)解析;(2) 滿足條件的C點(diǎn)坐標(biāo)為C(0,2+)或(0,-2-).
【解析】
(1)利用題中的思路畫(huà)出兩段優(yōu)弧即可;
(2)以類(lèi)似(1)的方法作出滿足條件的C點(diǎn),如圖2,然后利用勾股定理計(jì)算出CD的長(zhǎng),從而確定C的坐標(biāo),利用對(duì)稱再得到坐標(biāo)即可.
(1)如圖1,兩段優(yōu)。ú缓A、B兩端點(diǎn))為所作;
(2)
先做等腰直角△PAB,再以P點(diǎn)為圓心,PA為半徑作圓O交y軸于C點(diǎn);
作PD⊥y軸于D,易得P(1,2),PA=
∴PC=
∴CD=
∴OC=2+
∴C(0,2+)
同理可得(0,-2-)
綜上所述,滿足條件的C點(diǎn)坐標(biāo)為C(0,2+)或(0,-2-).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將每件進(jìn)價(jià)為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品的銷(xiāo)售單價(jià)每降低1元,其日銷(xiāo)量可增加8件.設(shè)該商品每件降價(jià)x元,商場(chǎng)一天可通過(guò)A商品獲利潤(rùn)y元.
(1)求y與x之間的函數(shù)解析式(不必寫(xiě)出自變量x的取值范圍)
(2)A商品銷(xiāo)售單價(jià)為多少時(shí),該商場(chǎng)每天通過(guò)A商品所獲的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)證明該方程一定有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)該方程兩根為x1、x2(x1<x2).
①當(dāng)時(shí),試確定y值的范圍;
②如圖,平面直角坐標(biāo)系中有三點(diǎn)A、B、C,坐標(biāo)分別為(x1,0)、(x2,3)、(7,0).以點(diǎn)C為圓心,2個(gè)單位長(zhǎng)度為半徑的圓與直線AB相切,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)踐與探究
在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)(0,0),點(diǎn)A(5,0),點(diǎn)B(0,3).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)O,B,C的對(duì)應(yīng)點(diǎn)分別為D,E,F.
(1)如圖(1),當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);
(2)如圖(2),當(dāng)點(diǎn)D落在線段BE上時(shí),AD與BC交于點(diǎn)H.
①求證:ΔADB≌ΔAOB;
②求點(diǎn)H的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一塊含有45°的三角板ABC的頂點(diǎn)A放在⊙O上,且AC與⊙O相切于點(diǎn)A(如圖1),將△ABC從點(diǎn)A開(kāi)始,繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°<α<135°),旋轉(zhuǎn)后,AC、AB分別與⊙O交于點(diǎn)E,F,連接EF(如圖2).已知AC=8,⊙O的半徑為4.
(1)在旋轉(zhuǎn)過(guò)程中,有以下幾個(gè)量:①弦EF的長(zhǎng);②的長(zhǎng);③∠AFE的度數(shù);④點(diǎn)O到EF的距離.其中不變的量是___________________(填序號(hào));
(2)當(dāng)α=________°時(shí),BC與⊙O相切(直接寫(xiě)出答案);
(3)當(dāng)BC與⊙O相切時(shí),求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件元,現(xiàn)在的售價(jià)為每件元,每星期可賣(mài)出件.市場(chǎng)調(diào)查反映:如果每件的售價(jià)每漲元(售價(jià)每件不能高于元),那么每星期將少賣(mài)出件.設(shè)每件漲價(jià)元(為非負(fù)整數(shù)),每星期的銷(xiāo)量為件.
①求與的函數(shù)關(guān)系式及自變量的取值范圍;
②如何定價(jià)才能使每星期的利潤(rùn)最大?每星期的最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把某矩形紙片ABCD沿EF,GH折疊(點(diǎn)E,H在AD邊上,點(diǎn)F,G在BC邊上),使點(diǎn)B和點(diǎn)C落在AD邊上同一點(diǎn)P處,A點(diǎn)的對(duì)稱點(diǎn)為A′點(diǎn),D點(diǎn)的對(duì)稱點(diǎn)為D′點(diǎn),若∠FPG=90°,△A′EP的面積為5,△D′PH的面積為20,則矩形ABCD的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于點(diǎn)、,拋物線經(jīng)過(guò)、兩點(diǎn),且對(duì)稱軸為直線.
(1)求拋物線的表達(dá)式;
(2)如果點(diǎn)是這拋物線上位于軸下方的一點(diǎn),且△的面積是.求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)投影后,小明、小穎利用燈光下自己的影子長(zhǎng)度來(lái)測(cè)量一路燈的高度,并探究影子長(zhǎng)度的變化規(guī)律.如圖,在同一時(shí)間,身高為1.6 m的小明(AB)的影子BC長(zhǎng)是3 m,而小穎(EH)剛好在路燈燈泡的正下方H點(diǎn),并測(cè)得HB=6 m.
(1)請(qǐng)?jiān)趫D中畫(huà)出形成影子的光線,并確定路燈燈泡所在的位置G;
(2)求路燈燈泡的垂直高度GH;
(3)如果小明沿線段BH向小穎(點(diǎn)H)走去,當(dāng)小明走到BH的中點(diǎn)B1處時(shí),其影子長(zhǎng)為B1C1;當(dāng)小明繼續(xù)走剩下路程的到B2處時(shí),其影子長(zhǎng)為B2C2;當(dāng)小明繼續(xù)走剩下路程的到B3處,…,按此規(guī)律繼續(xù)走下去,當(dāng)小明走剩下路程的到Bn處時(shí),其影子BnCn的長(zhǎng)為 m.(直接用含n的代數(shù)式表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com