【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求點B的坐標;
(2)求證:四邊形ABCE是平行四邊形;
(3)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.
【答案】(1)(4,4);(2)見解析;(3)1.
【解析】
(1)由在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,根據(jù)勾股定理即可求得AB與OA的長,即可求得點B的坐標;
(2)首先可得CE∥AB,D是OB的中點,根據(jù)直角三角形斜邊的中線等于斜邊的一半,可證得BD=AD,∠ADB=60°,又由△OBC是等邊三角形,可得∠ADB=∠OBC,根據(jù)內(nèi)錯角相等,兩直線平行,可證得BC∥AE,繼而可得四邊形ABCD是平行四邊形;
(3)首先設OG的長為x,由折疊的性質(zhì)可得:AG=CG=8-x,然后根據(jù)勾股定理可得方程(8-x)2=x2+(4)2,解此方程即可求得OG的長.
在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,
∴AB=OB=×8=4,
OA=OB-AB
∴OA= ==4
∴點B的坐標為(4,4);
(2)證明:∵∠OAB=90°,
∴AB⊥x軸,
∵y軸⊥x軸,
∴AB∥y軸,即AB∥CE,
∵∠AOB=30°,
∴∠OBA=60°,
∵DB=DO=4
∴DB=AB=4
∴∠BDA=∠BAD=120°÷2=60°,
∴∠ADB=60°,
∵△OBC是等邊三角形,
∴∠OBC=60°,
∴∠ADB=∠OBC,
即AD∥BC,
∴四邊形ABCE是平行四邊形;
(3)設OG的長為x,
∵OC=OB=8,
∴CG=8﹣x,
由折疊的性質(zhì)可得:AG=CG=8﹣x,
在Rt△AOG中,AG2=OG2+OA2,
即(8﹣x)2=x2+(4)2,
解得:x=1,
即OG=1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=AC,∠ABC的平分線BD交AC于點D,CE⊥BD,交BD的延長線于點E,若BD=6,則CE的值為( 。
A. 4B. 3.5C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①是一個水平放置的小正方體木塊,圖②、圖③是由這樣的小正方體木塊疊放而成,按照這樣的規(guī)律繼續(xù)疊放下去,第四個疊放的圖形時,小正方體木塊總數(shù)應是___塊;第七個疊放的圖形時,小正方體木塊總數(shù)應是____塊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 ,等腰三角形PEF中,PE=PF,點O在EF邊上(異于點E,F),點Q是PO延長線上一點,若△EFQ為等腰三角形,則稱點Q為△PEF的“同類點”.
(1)如圖,BG平分∠MBN,過射線BM上的點A作AD∥BN,交射線BG于點D,點O為BD上一點,連接AO并延長交射線BN于點C,若∠BAD=100°,∠BCD=70°,求證:點C是△ABD的“同類點”;
(2)如圖③,在5×5的正方形網(wǎng)格圖上有一個△ABC,點A,B,C均在格點上,在給出的網(wǎng)格圖上有一個格點D,使得點D為△ABC的“同類點”,則這樣的點D共有__________個;
(3)凸四邊形ABCD中,∠ABC=110°,DA=AB=BC,對角線AC,BD交于點O,且BD≠CD,若點C為△ABD的“同類點”,請直接寫出滿足條件的∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個問題:
如圖1,△ABC中,∠ACB=90°,點D在AB上,且∠BAC=2∠DCB,求證:AC=AD.
小明發(fā)現(xiàn),除了直接用角度計算的方法外,還可以用下面兩種方法:
方法1:如圖2,作AE平分∠CAB,與CD相交于點E.
方法2:如圖3,作∠DCF=∠DCB,與AB相交于點F.
(1)根據(jù)閱讀材料,任選一種方法,證明AC=AD.
用學過的知識或參考小明的方法,解決下面的問題:
(2)如圖4,△ABC中,點D在AB上,點E在BC上,且∠BDE=2∠ABC,點F在BD上,且∠AFE=∠BAC,延長DC、FE,相交于點G,且∠DGF=∠BDE.
①在圖中找出與∠DEF相等的角,并加以證明;
②若AB=kDF,猜想線段DE與DB的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家之一。為了增強居民節(jié)水意識,某市自來水公司對居民用水采用以戶為單位分段計費辦法收費。即一月用水10噸以內(nèi)(包括10噸)的用戶,每噸收水費a元;一月用水超過10噸的用戶,10噸水仍按每噸a元收費,超過10噸的部分,按每噸b元(b>a)收費。設一戶居民月用水x噸,應收水費y元,y與x之間的函數(shù)關(guān)系如圖所示。
(1)求a的值;某戶居民上月用水8噸,應收水費多少元?
(2)求b的值,并寫出當x>10時,y與x之間的函數(shù)關(guān)系式;
(3)已知居民甲上月比居民乙多用水4噸,兩家共收水費46元,求他們上月分別用水多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了預測本校九年級男生畢業(yè)體育測試達標情況,隨機抽取該年級部分男生進行了一次測試(滿分50分,成績均記為整數(shù)分),并按測試成績m(單位:分)分成四類:A類(45<m≤50),B類(40<m≤45),C類(35<m≤40),D類(m≤35)繪制出如圖所示的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
(1)求本次抽取的樣本容量和扇形統(tǒng)計圖中A類所對的圓心角的度數(shù);
(2)若該校九年級男生有500名,D類為測試成績不達標,請估計該校九年級男生畢業(yè)體育測試成績能達標的有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上,兩點對應的有理數(shù)分別為和12,點從點出發(fā),以每秒1個單位長度的速度沿數(shù)軸負方向運動,點同時從點出發(fā),以每秒2個單位長度的速度沿數(shù)軸正方向運動,設運動時間為秒.
(1)求經(jīng)過2秒后,數(shù)軸點、分別表示的數(shù);
(2)當時,求的值;
(3)在運動過程中是否存在時間使,若存在,請求出此時的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+4x+c(a≠0)經(jīng)過點A(﹣1,0),點E(4,5),與y軸交于點B,連接AB.
(1)求該拋物線的解析式;
(2)將△ABO繞點O旋轉(zhuǎn),點B的對應點為點F.
①當點F落在直線AE上時,求點F的坐標和△ABF的面積;
②當點F到直線AE的距離為時,過點F作直線AE的平行線與拋物線相交,請直接寫出交點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com