【題目】已知拋物線y=ax2+x+c與x軸交點(diǎn)的橫坐標(biāo)為﹣1,則a+c=

【答案】1
【解析】解:∵拋物線y=ax2+x+c與x軸交點(diǎn)的橫坐標(biāo)為﹣1,
∴拋物線y=ax2+x+c經(jīng)過(﹣1,0),
∴a﹣1+c=0,
∴a+c=1,
所以答案是1.
【考點(diǎn)精析】本題主要考查了拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí)點(diǎn),需要掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是中心對稱圖形,又是軸對稱圖形的是(

A.矩形B.三角形C.平行四邊形D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=x2+6x+5圖象的頂點(diǎn)坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知代數(shù)式3x2﹣6x的值為9,則代數(shù)式x2﹣2x+8的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過點(diǎn)B(1,4)和點(diǎn)E(3,0)兩點(diǎn).

(1)求拋物線的解析式;

(2)若點(diǎn)D在線段OC上,且BD⊥DE,BD=DE,求D點(diǎn)的坐標(biāo);

(3)在條件(2)下,在拋物線的對稱軸上找一點(diǎn)M,使得△BDM的周長為最小,并求△BDM周長的最小值及此時(shí)點(diǎn)M的坐標(biāo);

(4)在條件(2)下,從B點(diǎn)到E點(diǎn)這段拋物線的圖象上,是否存在一個(gè)點(diǎn)P,使得△PAD的面積最大?若存在,請求出△PAD面積的最大值及此時(shí)P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列推理過程,在括號(hào)中填寫理由. 已知:如圖,點(diǎn)D,E分別在線段AB、BC上,ACDE,DFAEBC于點(diǎn)F,AE平分∠BAC.求證:DF平分∠BDE

證明:∵AE平分∠BAC(已知)

∴∠1=2(________

ACDE(已知

∴∠1=3(________

故∠2=3(________

DFAE(已知

∴∠2=5(________

∴∠3=4(________

DE平分∠BDE(________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AC=3,BC=2,則線段AB的長度(  )

A. 一定是5 B. 一定是1 C. 一定是51 D. 以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O直徑,C、D為O上不同于A、B的兩點(diǎn),ABD=2BAC,連接CD.過點(diǎn)C作CEDB,垂足為E,直線AB與CE相交于F點(diǎn).

(1)求證:CFO的切線

(2)當(dāng)BF=5,時(shí),求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的身份證號(hào)碼是321281199202030630,他出生日期是日.

查看答案和解析>>

同步練習(xí)冊答案