【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的頂點都在正方形網(wǎng)格的格點(網(wǎng)格線的交點)上.
(1)畫出△ABC先向右平移5個單位長度,再向上平移2個單位長度所得的△A1B1C1;
(2)畫出△ABC的中線AD;
(3)畫出△ABC的高CE所在直線,標出垂足E:
(4)在(1)的條件下,線段AA1和CC1的關(guān)系是
【答案】(1)見解析;(2)見解析;(3)見解析;(4)平行且相等
【解析】
(1)利用網(wǎng)格特點和平移的性質(zhì)畫出A、B、C的對應(yīng)點A1、B1、C1即可;
(2)根據(jù)三角形中線的定義畫出圖形即可;
(3)根據(jù)三角形高的定義畫出圖形即可;
(4)根據(jù)平移的性質(zhì)即可得出結(jié)論.
解:(1)如圖,△A1B1C1即為所作圖形;
(2)如圖,線段AD即為所作圖形;
(3)如圖,直線CE即為所作圖形;
(4)∵△A1B1C1是由△ABC平移得到,
∴A和A1,C和C1是對應(yīng)點,
∴AA1和CC1的關(guān)系是:平行且相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,點P在AD邊上以每秒1cm的速度從點A向點D運動,點Q在BC邊上,以每秒4cm的速度從點C出發(fā),在CB間往返運動,兩個點同時出發(fā),當點P到達點D時停止(同時點Q也停止),在這段時間內(nèi),線段PQ有(。┐纹叫杏AB?
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:用2輛A型車和1輛B型車載滿貨物一次可運貨10噸;用1輛A型車和2輛B型車載滿貨物一次可運貨11噸,某物流公司現(xiàn)有26噸貨物,計劃A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.
根據(jù)以上信息,解答下列問題:
(1)1輛A型車和1輛車B型車都載滿貨物一次可分別運貨多少噸?
(2)請你幫該物流公司設(shè)計租車方案;
(3)若A型車每輛需租金100元/次,B型車每輛需租金120元/次.請選出最省錢車方案,并求出最少租車費.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ABCD.
(1)作圖,作∠A的平分線AE交CD于點E(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,判斷△AED的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若△ABC內(nèi)有一個點P1,當P1、A、B、C沒有任何三點在同一直線上時,如圖1,可構(gòu)成3個互不重疊的小三角形;若△ABC內(nèi)有兩個點P1、P2,其它條件不變,如圖2,可構(gòu)成5個互不重疊的小三角形:……若△ABC內(nèi)有n個點,其它條件不變,則構(gòu)成若干個互不重疊的小三角形,這些小三角形的內(nèi)角和為()
A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某集團購買了150噸物資打算運往某地支援,現(xiàn)有甲、乙、丙三種車型供選擇,每輛汽車的運載能力和運費如下表所示:(假設(shè)每輛車均滿載)
車型 | 甲 | 乙 | 丙 |
汽車運載量(噸/輛) | 5 | 8 | 10 |
汽車運費(元/輛) | 1000 | 1200 | 1500 |
(1)若全部物資都用甲、乙兩種車型來運送,需運費24000元,問分別需甲、乙兩種車型各多少輛?
(2)若該集團決定用甲、乙、丙三種汽車共18輛同時參與運送,請你寫出可能的運送方案,并幫助該集團找出運費最省的方案(甲、乙、丙三種車輛均要參與運送).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的頂點坐標分別為A(-3,5),B(-2,1),C(-1,3).
(1)將△ABC向右平移3個單位得到△A1B1C1,請畫出平移后的△A1B1C1;
(2)將△A1B1C1沿x軸翻折得到△A2B2C2,請畫出翻折后的△A2B2C2;
(3)若點P(m,n)是△ABC內(nèi)一點,點Q是△A2B2C2內(nèi)與點P對應(yīng)的點,則點Q坐標______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在矩形ABCD中,對角線AC與BD相交于點O,過點O作直線EF⊥BD,且交AD于點E,交BC于點F,連接BE,DF,且BE平分∠ABD.
①求證:四邊形BFDE是菱形;
②直接寫出∠EBF的度數(shù).
(2)把(1)中菱形BFDE進行分離研究,如圖2,G,I分別在BF,BE邊上,且BG=BI,連接GD,H為GD的中點,連接FH,并延長FH交ED于點J,連接IJ,IH,IF,IG.試探究線段IH與FH之間滿足的關(guān)系,并說明理由;
(3)把(1)中矩形ABCD進行特殊化探究,如圖3,矩形ABCD滿足AB=AD時,點E是對角線AC上一點,連接DE,作EF⊥DE,垂足為點E,交AB于點F,連接DF,交AC于點G.請直接寫出線段AG,GE,EC三者之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com