精英家教網 > 初中數學 > 題目詳情

【題目】以坐標原點O為圓心,作半徑為3的圓,若直線y=xb與⊙O相交,則b的取值范圍是____

【答案】-3≤b≤3;

【解析】

求出直線y=-x+b與圓相切,且函數經過一、二、四象限,和當直線y=-x+b與圓相切,且函數經過二、三、四象限時b的值,則相交時b的值在相切時的兩個b的值之間.

當直線y=-x+b與圓相切,且函數經過一、二、四象限時,如圖.

y=-x+b中,令x=0時,y=b,則與y軸的交點是(0,b),

y=0時,x=b,則A的交點是(b,0),

OA=OB,即△OAB是等腰直角三角形.

連接圓心O和切點C.則OC=3.

OB=OC=3.即b=3;

同理,當直線y=-x+b與圓相切,且函數經過二、三、四象限時,b=-3

則若直線y=-x+b與⊙O相交,則b的取值范圍是-3<b<3

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】1)解不等式組

2)分解因式:

3)先化簡,再求值:,其中

4)解分式方程:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+ca≠0)的部分圖象如圖所示,圖象過點(-1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(2)abc>0;(3)b2-4ac>0;(4)5a+c=0;(5)若m≠2,則mam+b)>2(2a+b),其中正確的結論有______(填序號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形紙片放入以所在直線為軸,邊上一點為坐標原點的直角坐標系中,連接.將紙片沿折疊,使得點落在邊上點處,若,,在上存在點,使、的距離之和最小,則點的坐標為__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為O的直徑,弦CFAB于點E,CF=4,過點C作O的切線交AB的延長線于點D,D=30°,則OA的長為( 。

A. 2 B. 4 C. 4 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC為弦,∠BAC的平分線交⊙O于點D,過點D的切線交AC的延長線于點G.

求證:(1)DG⊥AG;

(2)AG+CG=AB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某個體小服裝店主準備在夏季來臨前,購進甲、乙兩種T恤.兩種T恤的相關信息如表:

品牌

進價(元/件)

45

80

售價(元/件)

75

120

根據上述信息,該店決定用不少于6198元,但不超過6296元的資金購進這兩種T恤共100件請解答下列問題:

1)該店有哪幾種進貨方案?

2)該店按哪種方案進貨所獲利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某體育用品商店銷售一批運動鞋,零售價每雙240元.如果一次購買超過10雙,那么每多購1雙,所購運動鞋單價降低6元,但單價不能低于150元.若該顧客購買了x雙(x>10)這批運動鞋.

(1)設每雙運動鞋的價格為y元,求y與x的函數關系式;

(2)若該顧客購買這種運動鞋支付了3600元,則該顧客買了多少雙運動鞋?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)如圖1,長方體的長為4cm,寬為3cm,高為12cm.求該長方體中能放入木棒的最大長度;

2)如圖2,長方體的長為4cm,寬為3cm,高為12cm.現(xiàn)有一只螞蟻從點A處沿長方體的表面爬到點G處,求它爬行的最短路程.

3)若將題中的長方體換成透明圓柱形容器(容器厚度忽略不計)的高為12cm,底面周長為10cm,在容器內壁離底部3cm的點B處有一飯粒,此時一只螞蟻正好在容器外壁且離容器上沿3cm的點A處.求螞蟻吃到飯粒需要爬行的最短路程是多少?

查看答案和解析>>

同步練習冊答案