【題目】“校園安全”受到社會的廣泛關(guān)注,某校政教處對部分學(xué)生就校園安全知識的了解程度,進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制了如下兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有______名;
(2)請補全折線統(tǒng)計圖,并求出扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角的大小.
【答案】(1)60;(2)圖形見解析,“基本了解”部分所對應(yīng)扇形的圓心角的大小為90°.
【解析】試題分析:(1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學(xué)生數(shù);
(2)由(1)可求得了解的人數(shù),繼而補全折線統(tǒng)計圖;求得扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角;
試題解析:(1)∵了解很少的有30人,占50%,
∴接受問卷調(diào)查的學(xué)生共有:30÷50%=60(人);
“了解”的人數(shù)為: (人);
補全統(tǒng)計圖,如圖所示:
扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=AC=10cm,BC=8cm,點D為AB的中點.
(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在△ABC邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4 cm,BC=8 cm,點P從點D出發(fā)向點A運動,運動到點A即停止;同時點Q從點B出發(fā)向點C運動,運動到點C即停止.點P,Q的速度的速度都是1 cm/s,連結(jié)PQ,AQ,CP,設(shè)點P,Q運動的時間為t(s).
(1)當(dāng)t為何值時,四邊形ABQP是矩形?
(2)當(dāng)t為何值時,四邊形AQCP是菱形?
(3)分別求出(2)中菱形AQCP的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點在直線上運動(不與點、重合),點在射線上運動,且,設(shè).
(1)如圖①,當(dāng)點在邊上時,且,則_______,_______;
(2)如圖②,當(dāng)點運動到點的左側(cè)時,其他條件不變,請猜想
和的數(shù)量關(guān)系,并說明理由;
(3)當(dāng)點運動到點C的右側(cè)時,其他條件不變,和還滿足(2)
中的數(shù)量關(guān)系嗎?請畫出圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= 的圖象交于A(2,3),B(﹣3,n)兩點.
(1)求反比例函數(shù)的解析式;
(2)過B點作BC⊥x軸,垂足為C,若P是反比例函數(shù)圖象上的一點,連接PC,PB,求當(dāng)△PCB的面積等于5時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市實施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高.張老師為了解所教班級學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對本班部分學(xué)生進(jìn)行了為期半個月的跟蹤調(diào)查,將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,張老師一共調(diào)查了________名同學(xué),其中C類女生有________名,D類男生有________名;
(2)將下面的條形統(tǒng)計圖補充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:a=,,c是-27的立方根.
(1)b =_______,c =_______;
(2)化簡a,并求a+b-c的平方根;
(3)若關(guān)于的不等式組無解,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是∠AOB的角平分線OC上一點,分別連接AP、BP,若再添加一個條件即可判定△AOP≌△BPO,則一下條件中:①∠A=∠B;②∠APO=∠BPO;③∠APC=∠BPC; ④AP=BP;⑤OA=OB.其中一定正確的是 (只需填序號即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com