【題目】一個(gè)四位數(shù),記千位上和百位上的數(shù)字之和為x,十位上和個(gè)位上的數(shù)字之和為y,如果x=y,那么稱這個(gè)四位數(shù)為“和平數(shù)”.
例如:2635,x=2+6,y=3+5,因?yàn)?/span>x=y,所以2635是“和平數(shù)”.
(1)請(qǐng)判斷:3562 (填“是”或“不是”)“和平數(shù)”.
(2)直接寫出:最小的“和平數(shù)”是 ,最大的“和平數(shù)”是 ;
(3)如果一個(gè)“和平數(shù)”的個(gè)位上的數(shù)字是千位上的數(shù)字的兩倍,且百位上的數(shù)字與十位上的數(shù)字之和是14,求滿足條件的所有“和平數(shù)”.
【答案】(1)是;(2)1001,9999;(3)這個(gè)數(shù)為2864或4958.
【解析】
(1)用定義驗(yàn)證x和y是否相等
(2)找最小和最大的單位數(shù),注意千位數(shù)不能為0
(3)根據(jù)“和平數(shù)”定義,以及個(gè)數(shù)位之間的關(guān)系確定
解:(1)x=3+5=8,y=6+2=8
∵x=y
∴3562是“和平數(shù)”
∴答案:是這個(gè)
(2)最小的自然數(shù)為0,最大的單位數(shù)為9,但千位數(shù)字不能為0
∴最小的“和平數(shù)”為:1001
最大的“和平數(shù)”為:9999
(3)解:設(shè)這個(gè)“和平數(shù)”為
則d=2a,a+b=c+d,b+c=14
∴2c+a=14
∴a為偶數(shù)2,4,6(舍去),8(舍去),d=4,6,12(舍去),14(舍去),
①當(dāng)a=2,d=4時(shí) 2c+a=14
∴c=6
∵b+c=14
∴b=8
②當(dāng)a=4,d=8時(shí) 2c+a=14
∴c=5∵b+c=14
∴b=9
∴綜上所述:這個(gè)數(shù)為2864或4958
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某區(qū)九年級(jí)學(xué)生課外體育活動(dòng)的情況,從該年級(jí)學(xué)生中隨機(jī)抽取了4%的學(xué)生,對(duì)其參加的體育活動(dòng)項(xiàng)目進(jìn)行了調(diào)查,將調(diào)查的數(shù)據(jù)進(jìn)行統(tǒng)計(jì)并繪制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.有下列結(jié)論:①被抽測(cè)學(xué)生中參加羽毛球項(xiàng)目的人數(shù)為30;②在本次調(diào)查中“其他”的扇形的圓心角的度數(shù)為36°;③估計(jì)全區(qū)九年級(jí)參加籃球項(xiàng)目的學(xué)生比參加足球項(xiàng)目的學(xué)生多20%;④全區(qū)九年級(jí)大約有1500名學(xué)生參加乒乓球項(xiàng)目.其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC=3∠BAD,記∠ADC=,∠ACG=,∠AEF=,則:(1)__(填“>”、“=”或“<”號(hào));
(2)、、三者間的數(shù)量關(guān)系式是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD∥BC,∠3+∠4=180°,要證∠1=∠2,請(qǐng)完善證明過程,并在括號(hào)內(nèi)填上相應(yīng)依據(jù):
∵AD∥BC(已知)
∴∠l=∠3( ),
∵∠3+∠4=180°(已知),
∴BE∥DF( ),
∴ = ( ).
∴∠1=∠2( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】上午8時(shí),一條船從海島A出發(fā),以15海里/時(shí)的速度向正北航行,10時(shí)到達(dá)海島B處,從A、B望燈塔C,測(cè)得∠BAC=60°,點(diǎn)C在點(diǎn)B的正西方向,海島B與燈塔C之間的距離是_____海里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在邊上,點(diǎn)為邊上一動(dòng)點(diǎn),連接與關(guān)于所在直線對(duì)稱,點(diǎn)分別為的中點(diǎn),連接并延長(zhǎng)交所在直線于點(diǎn),連接.當(dāng)為直角三角形時(shí),的長(zhǎng)為_________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線 與x軸交于兩點(diǎn)A(﹣4,0)和B(1,0),與y軸交于點(diǎn)C(0,2),動(dòng)點(diǎn)D沿△ABC的邊AB以每秒2個(gè)單位長(zhǎng)度的速度由起點(diǎn)A向終點(diǎn)B運(yùn)動(dòng),過點(diǎn)D作x軸的垂線,交△ABC的另一邊于點(diǎn)E,將△ADE沿DE折疊,使點(diǎn)A落在點(diǎn)F處,設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t秒.
(1)求拋物線的解析式和對(duì)稱軸;
(2)是否存在某一時(shí)刻t,使得△EFC為直角三角形?若存在,求出t的值;若不存在,請(qǐng)說明理由;
(3)設(shè)四邊形DECO的面積為s,求s關(guān)于t的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥EF,∠C=90°,∠B,∠D,∠E三個(gè)角的大小分別是x,y,z則x,y,z之間滿足的關(guān)系式是( )
A. x+z=yB. x+y+═180°C. x+y﹣z=90°D. y+z﹣x=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一條線段AB平移一段距離后得到線段A’B’,連接AA’,BB’可以得到一個(gè)平行四邊形ABB’A’請(qǐng)據(jù)此回答下面問題:
在平面直角坐標(biāo)系中有A點(diǎn)(1,0),B點(diǎn)(-2,1),C點(diǎn)(-1,-3),若坐標(biāo)平面內(nèi)存在點(diǎn)D,使得A,B,C,D四點(diǎn)恰好能構(gòu)成一個(gè)平行四邊形,求D點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com