精英家教網(wǎng)如圖,已知正比例函數(shù)y=ax與反比例函數(shù)y=
kx
的圖象交于點A(3,2)
(1)求上述兩函數(shù)的表達式;
(2)M(m,n)是反比例函數(shù)圖象上的一個動點,其中0<m<3,過點M作直線MB∥x軸,交y軸于點B;過點A點作直線AC∥y軸交x軸于點C,交直線MB于點D.若s四邊形OADM=6,求點M的坐標,并判斷線段BM與DM的大小關(guān)系,說明理由;
(3)探索:x軸上是否存在點P.使△OAP是等腰三角形?若存在,求出點P的坐標; 若不存在,說明理由.
分析:(1)將A(3,2)分別代入y=
k
x
,y=ax中,得ak的值,進而可得正比例函數(shù)和反比例函數(shù)的表達式;
(2)由S△OMB=S△OAC=
1
2
|k|=3,可得S矩形OBDC=12;即OC•OB=12;進而可得mn的值,故可得BM與DM的大;比較可得其大小關(guān)系;
(3)存在.由(2)可知D(3,4),根據(jù)矩形的性質(zhì)得A(3,2),分為OA為等腰三角形的腰,OA為等腰三角形的底,分別求P點坐標.
解答:解:(1)將A(3,2)分別代入y=
k
x
,y=ax中,得:2=
k
3
,3a=2
∴k=6,a=
2
3
,
∴反比例函數(shù)的表達式為:y=
6
x
,
正比例函數(shù)的表達式為y=
2
3
x;

(2)BM=DM
理由:∵S△OMB=S△OAC=
1
2
×|k|=3
∴S矩形OBDC=S四邊形OADM+S△OMB+S△OAC=3+3+6=12
即OC•OB=12
∵OC=3
∴OB=4
即n=4
∴m=
6
n
=
3
2
,即點M的坐標為(
3
2
,4)
∴MB=
3
2
,MD=3-
3
2
=
3
2
,
∴MB=MD;

(3)存在.
由(2)得A(3,2),OA=
32+22
=
13

當OA為等腰三角形的腰時,P(
13
,0)或(-
13
,0)或(6,0),
當OA為等腰三角形的底,P(
13
6
,0).
∴滿足條件的P點坐標為(
13
,0)或(-
13
,0)或(6,0)或(
13
6
,0).
點評:此題綜合考查了反比例函數(shù),正比例函數(shù)等多個知識點.此題難度稍大,綜合性比較強,注意對各個知識點的靈活應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點A(3,3).
(1)求正比例函數(shù)和反比例函數(shù)的解析式;
(2)把直線OA向下平移后與反比例函數(shù)的圖象交于點B(6,m),求m的值和這個一次函數(shù)的解析式;
(3)第(2)問中的一次函數(shù)的圖象與x軸、y軸分別交于C、D,求過A、B、D三點的二次函數(shù)的解析式;
(4)在第(3)問的條件下,二次函數(shù)在第一象限的圖象上是否存在點E,使四邊形OECD的面積S1與四精英家教網(wǎng)邊形OABD的面積S滿足:S1=
23
S?若存在,求點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正比例函數(shù)y=3x與反比例函數(shù)y=
kx
(k≠0)
的圖象都經(jīng)過點A和點B,點A的橫坐精英家教網(wǎng)標為1,過點A作x軸的垂線,垂足為M,連接BM.
求:(1)這個反比例函數(shù)的解析式;
(2)△ABM的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知正比例函數(shù)y=kx的圖象經(jīng)過點A(-2
3
,a),過點A作AB⊥x軸于點B,△A0B的面積為4
3

(1)求k和a的值;
(2)若一次函數(shù)y=nx+2的圖象經(jīng)過點A,并且與X軸相交于點M,問:在x軸上是否存在點P,使得以三點P、A、M組成的三角形AMP為等腰三角形?如果存在,請求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點A(3,3).
(1)求正比例函數(shù)和反比例函數(shù)的解析式;
(2)把直線OA向下平移后與反比例函數(shù)的圖象交于點B(6,m),求m的值和這個一次函數(shù)的解析式;
(3)第(2)問中的一次函數(shù)的圖象與x軸、y軸分別交于C、D,求過A、B、D三點的三角形的面積.

查看答案和解析>>

同步練習冊答案