【題目】如圖,在 Rt△ABC 中,∠ACB=90°,BC=5,點(diǎn) P 在邊 AB 上,連接 CP.將△BCP 沿直線CP 翻折后,點(diǎn) B 恰好落在邊 AC 的中點(diǎn)處,則點(diǎn) P 到 AC 的距離是( )
A. 2.5 B. C. 3.5 D.
【答案】B
【解析】
作PN⊥AC,PM⊥BC,垂足分別為N、M, 點(diǎn)D為AC的中點(diǎn), 根據(jù)折疊的性質(zhì)得AD=AB=5, ∠BCP=∠ACP, 則AC=2AD=10, 根據(jù)角平分線定理得PM=PN, 然后利用三角形面積相等可求得PN的長(zhǎng).
解:如圖,
將△BCP 沿直線CP 翻折后,點(diǎn) B 恰好落在邊 AC 的中點(diǎn)處,假設(shè)這個(gè)點(diǎn)是D,
可得BC=CD=5,AC=2CD=10,
作PN⊥AC,PM⊥BC,垂足分別為N、M.則∠BCP=∠ACP ,PM=PN,
又Rt △ABC 中,∠BAC=90,BC=5,
BC=CD=5,AC=2CD=10,
=+= 510= 5PM+ 10PN,
解得PN=,所以點(diǎn)M到AC的距離是.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=2,P是AB邊上一動(dòng)點(diǎn),PD⊥AC于點(diǎn)D,點(diǎn)E在P的右側(cè),且PE=1,連結(jié)CE.P從點(diǎn)A出發(fā),沿AB方向運(yùn)動(dòng),當(dāng)E到達(dá)點(diǎn)B時(shí),P停止運(yùn)動(dòng).在整個(gè)運(yùn)動(dòng)過(guò)程中,圖中陰影部分面積S1+S2的大小變化情況是( )
A.一直減小
B.一直不變
C.先增大后減小
D.先減小后增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的數(shù)陣是由88個(gè)偶數(shù)組成:
(1)觀察數(shù)陣中平行四邊形框內(nèi)的四個(gè)數(shù)之間的關(guān)系,在數(shù)陣中任意作一個(gè)相同的平行四邊形框圈出四個(gè)數(shù),設(shè)其中最小的數(shù)為x,那么其他三個(gè)數(shù)怎樣表示?
(2)甲同學(xué)這樣圈出的四個(gè)數(shù)的和為432,你能求出這四個(gè)數(shù)嗎?
(3)乙同學(xué)想用這樣的框圈出和為172的四個(gè)數(shù),可能嗎?
(4)你能用這樣的框圈出和為352的四個(gè)數(shù)嗎?若能,請(qǐng)寫出這四個(gè)數(shù);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線 OC,使∠BOC=60°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)
(1)如圖1,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖2,將直角三角板DOE繞點(diǎn)O逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)到某個(gè)位置,若OE恰好平分∠AOC,請(qǐng)說(shuō)明OD所在射線是∠BOC的平分線;
(3)如圖3,將三角板DOE繞點(diǎn)O逆時(shí)針轉(zhuǎn)動(dòng)到某個(gè)位置時(shí),若恰好∠COD= ∠AOE,求∠BOD的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠CAB=∠DAB下列條件中不能使△ABC≌△ABD的是( )
A. ∠C=∠D B. ∠ABC=∠ABD C. AC=AD D. BC=BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,∠C=65°,AD 為 BC 邊上的高.
(1)求∠CAD 的度數(shù);
(2)若∠B=45°,AE 平分∠BAC,求∠EAD 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB是一個(gè)直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD,OE.
(1) 如圖1,當(dāng)∠BOC=70°時(shí),求∠DOE的度數(shù).
(2) 如圖2,當(dāng)射線OC在∠AOB內(nèi)繞點(diǎn)O旋轉(zhuǎn)時(shí),∠DOE的大小是否發(fā)生變化?說(shuō)明理由.
(3) 當(dāng)射線OC在∠AOB外繞點(diǎn)O旋轉(zhuǎn)且∠AOC為鈍角時(shí),畫出圖形,直接寫出相應(yīng)的∠DOE的度數(shù).(不必寫出過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點(diǎn)D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下列材料:
我們可以通過(guò)以下方法求代數(shù)式x2+6x+5的最小值.
x2+6x+5=x2+2x3+32﹣32+5=(x+3)2﹣4,
∵(x+3)2≥0
∴當(dāng)x=﹣3時(shí),x2+6x+5有最小值﹣4.
請(qǐng)根據(jù)上述方法,解答下列問(wèn)題:
(Ⅰ)x2+4x﹣1=x2+2x2+22﹣22﹣1=(x+a)2+b,則ab的值是_____;
(Ⅱ)求證:無(wú)論x取何值,代數(shù)式x2+2x+7的值都是正數(shù);
(Ⅲ)若代數(shù)式2x2+kx+7的最小值為2,求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com