精英家教網 > 初中數學 > 題目詳情

【題目】將一枚六個面編號分別為1,2,3,4,5,6的質地均勻的正方體骰子先后投擲兩次,記第一次擲出的點數為,第二次擲出的點數為,則使關于的方程組 只有正數解的概率為( ).

A. B. C. D.

【答案】D

【解析】

列舉出所有情況,看所求的情況占總情況的多少即可.

解:當2a-b=0時,方程組無解;

2a-b≠0時,由a、b的實際意義為1,23,45,6易知a,b都為大于0的整數,

則兩式聯(lián)合求解可得

∵使x、y都大于0則有,

解得a1.5,b3或者a1.5,b3,而a,b都為16的整數,

所以可知當a1b只能是4,5,6;或者a2,3,4,56b12,

這兩種情況的總出現可能有3+10=13種;

又擲兩次骰子出現的基本事件共6×6=36種情況,故所求概率,

故選:D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,∠ABC的平分線交AD于點E,過點DBE的平行線交于BCF

(1)求證:△ABE≌CDF

(2)若AB=6,BC=8,DE的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知直線ABCD,點P為直線l上一點,嘗試探究并解答:

1)如圖1,若點P在兩平行線之間,∠123°,∠235°,則∠3

2)探究圖1∠1,∠2∠3之間的數量關系,并說明理由;

3)如圖2,若點PCD的上方,探究∠1∠2∠3之間有怎樣的數量關系,并說明理由;

4)如圖3,若PCDPAB的平分線交于點P1,DCP1BAP1的平分線交于點P2,DCP2BAP2的平分線交于點P3,,∠DCPn1∠BAPn1的平分線交于點Pn,若PCD=α,PAB=β,直接寫出APnC的度數(用含αβ的代數式表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB = 6cm,∠CAB = 25°P是線段AB上一動點,過點PPMAB交射線AC于點M,連接MB,過點PPNMB于點N.設A,P兩點間的距離為xcm,P,N兩點間的距離為ycm.(當點P與點A或點B重合時,y的值均為0)小海根據學習函數的經驗,對函數y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小海的探究過程,請補充完整:

1)通過取點、畫圖、測量,得到了xy的幾組值,如下表:

x/cm

0.00

0.60

1.00

1.51

2.00

2.75

3.00

3.50

4.00

4.29

4.90

5.50

6.00

y/cm

0.00

0.29

0.47

0.70

1.20

1.27

1.37

1.36

1.30

<>1.00

0.49

0.00

說明:補全表格時相關數值保留兩位小數)

2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象

3)結合畫出的函數圖象,解決問題:當y=0.5時,與之對應的值的個數是 .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD,B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積為______。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為了更好的開展學校特色體育教育,從全校八年級的各班分別隨機抽取了5名男生和5名女生,組成了一個容量為60的樣本,進行各項體育項目的測試,了解他們的身體素質情況.下表是整理樣本數據,得到的關于每個個體的測試成績的部分統(tǒng)計表、圖:某校60名學生體育測試成績頻數分布表

成績

劃記

頻數

百分比

優(yōu)秀

正正正

a

30%

良好

正正正正正正

30

b

合格

9

15%

不合格

3

5%

合計

60

60

100%

(說明:40﹣﹣﹣55分為不合格,55﹣﹣﹣70分為合格,70﹣﹣﹣85分為良好,85﹣﹣﹣100分為優(yōu)秀)請根據以上信息,解答下列問題:

(1)表中的a=_____,b=_____;

(2)請根據頻數分布表,畫出相應的頻數分布直方圖;

(3)如果該校八年級共有150名學生,根據以上數據,估計該校八年級學生身體素質良好及以上的人數為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】端午節(jié)期間,揚州某商場為了吸引顧客,開展有獎促銷活動,設立了一個可以自由轉動的轉盤轉盤被分成4個面積相等的扇形,四個扇形區(qū)域里分別標有“10”、“20”、“30”、“40的字樣(如圖).規(guī)定同一日內顧客在本商場每消費滿100元就可以轉動轉盤一次,商場根據轉盤指針指向區(qū)域所標金額返還相應數額的購物券某顧客當天消費240,轉了兩次轉盤

(1)該顧客最少可得 元購物券最多可得 元購物券;

(2)請用畫樹狀圖或列表的方法,求該顧客所獲購物券金額不低于50元的概率

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀并理解下面的證明過程,并在每步后的括號內填寫該步推理的依據.如圖,已知.求證:

證明:在△ABC和△DCB中,

AB=DC(已知)

AC=DB(已知)

= ( )

∴△ABC≌△DCB( )

∴∠ABC=∠DCB,∠ACB=∠DBC( )

∴∠ABC-∠DBC=∠DCB-∠ACB即∠1=∠2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,已知∠ABC∠ACB的平分線相交于點F,過點FDF∥BC,交AB于點D,交AC于點E,若BD=4,DE=9,則線段CE的長為( )

A.3B.4C.5D.6

查看答案和解析>>

同步練習冊答案