【題目】已知關(guān)于x的一元二次方程x2﹣2(a+1)x+a2+3=0有兩個實數(shù)根x1,x2
(1)求實數(shù)a的取值范圍
(2)若等腰△ABC的三邊長分別為x1,x2,6,求△ABC的周長
(3)是否存在實數(shù)a,使x1,x2恰是一個邊長為的菱形的兩條對角線的長?若存在,求出這個菱形的面積;若不存在,說明理由.
【答案】(1)a≥1;(2)14;(3)存在,4.
【解析】
(1)根據(jù)一元二次方程根的判別式建立不等式求解即可;
(2)首先分x1=x2,當x1=6或x2=6兩種情況討論,之后再分情況代入求出a的值再求出對應(yīng)的x的值進一步計算即可;
(3)首先根據(jù)根與系數(shù)的關(guān)系得出x1+x2=2(a+1),x1x2=a2+3,根據(jù)勾股定理建立方程,然后進一步變形代入計算出a的值,然后利用菱形面積等于對角線乘積一半求出面積即可.
解:(1)根據(jù)題意得△=4(a+1)2﹣4(a2+3)=8a﹣8≥0, ∴a≥1;
(2)①當?shù)妊?/span>△ABC底邊為6,x1=x2時,△=0,則a=1,
方程變形為x2﹣4x+4=0,解得x1=x2=2,而2+2<6,不符合三角形三邊的關(guān)系,舍去;
②當?shù)妊?/span>△ABC腰長為6,x1=6或x2=6時,把x=6代入方程x2﹣2(a+1)x+a2+3=0得36﹣12(a+1)+a2+3=0,解得a1=3,a2=9,
當a=3時,方程化為x2﹣8x+12=0,解得x=2或6,三角形三邊為6、6、2,則△ABC的周長為6+6+2=14;
當a=9時,方程化為x2﹣20x+84=0,解得x=14或6,而6+6<14,不符合三角形三邊的關(guān)系,舍去;
∴△ABC的周長為14;
(3)存在.
由題意得:x1+x2=2(a+1),x1x2=a2+3,
∵x12+x22=()2,
∴(x1+x2)2﹣2x1x2=22,
即4(a+1)2﹣2(a2+3)=88,
整理得a2+4a﹣45=0,解得a1=5,a2=﹣9(舍去),
當a=5,方程化為x2﹣12x+28=0,則x1x2=28,所以這個菱形的面積=×28=14.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,甲、乙兩人在玩轉(zhuǎn)盤游戲時,分別把轉(zhuǎn)盤A,B分成3等份和1等份,并在每一份內(nèi)標上數(shù)字.游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,指針所在區(qū)域的數(shù)字之積為奇數(shù)時,甲獲勝;當數(shù)字之積為偶數(shù)時,乙獲勝.如果指針恰好在分割線上時,則需重新轉(zhuǎn)動轉(zhuǎn)盤.
(1)利用畫樹狀圖或列表的方法,求甲獲勝的概率.
(2)這個游戲規(guī)則對甲、乙雙方公平嗎?若公平,請說明理由;若不公平,請你在轉(zhuǎn)盤A上只修改一個數(shù)字使游戲公平(不需要說明理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=13,BC=5,點D、E分別在邊BC、AC上,且BD=CE,將△CDE沿DE翻折,點C落在點F處,且DF∥AB,則BD的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利達經(jīng)銷店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費提供貨源,待貨物售出后再進行結(jié)算,未售出的由廠家負責處理).當每噸售價為260元時,月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準備采取降價的方式進行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當每噸售價每下降10元時,月銷售量就會增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費用100元.
(1)當每噸售價是240元時,計算此時的月銷售量;
(2)在遵循“薄利多銷”的原則下,問每噸材料售價為多少時,該經(jīng)銷店的月利潤為9000元?
(3)小靜說:“當月利潤最大時,月銷售額也最大.”你認為對嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC邊上一動點,G是BC邊上的一動點,GE∥AD分別交AC、BA或其延長線于F、E兩點
(1)如圖1,當BC=5BD時,求證:EG⊥BC;
(2)如圖2,當BD=CD時,FG+EG是否發(fā)生變化?證明你的結(jié)論;
(3)當BD=CD,FG=2EF時,DG的值= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=4cm,點M為邊BC的中點,點N為邊AB上的任意一點(不與點A,B重合).若點B關(guān)于直線MN的對稱點B'恰好落在等邊△ABC的邊上,則BN的長為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水庫90天內(nèi)的日捕撈量y(kg)與時間第x(天)滿足一次函數(shù)的關(guān)系,部分數(shù)據(jù)如表:
時間第x(天) | 1 | 3 | 6 | 10 |
日捕撈量(kg) | 198 | 194 | 188 | 180 |
(1)求出y與x之間的函數(shù)解析式;
(2)水庫前50天采用每天降低水位的辦法減少捕撈成本,到達最低水位標準后,后40天水庫維持最低水位進行捕撈.捕撈成本和時間的關(guān)系如下表:
時間第x(天) | 1≤x<50 | 50≤x≤90 |
捕撈成本(元/kg) | 60-x | 10 |
已知鮮魚銷售單價為每千克70元,假定該養(yǎng)殖場每天捕撈和銷售的鮮魚沒有損失,且能在當天全部售出.設(shè)銷售該鮮魚的當天收入w元(當天收入=日銷售額-日捕撈成本),
①請寫出w與x之間的函數(shù)解析式,并求出90天內(nèi)哪天收入最大?當天收入是多少?
②若當天收入不低于4800元,請直接寫出x的取值范圍?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A是y軸上一點,其坐標為(0,6),點B在x軸的正半軸上.點P,Q均在線段AB上,點P的橫坐標為m,點Q的橫坐標大于m,在△PQM中,若PM∥x軸,QM∥y軸,則稱△PQM為點P,Q的“肩三角形.
(1)若點B坐標為(4,0),且m=2,則點P,B的“肩三角形”的面積為 ;
(2)當點P,Q的“肩三角形”是等腰三角形時,求點B的坐標;
(3)在(2)的條件下,作過O,P,B三點的拋物線y=ax2+bx+c
①若M點必為拋物線上一點,求點P,Q的“肩三角形”面積S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.
②當點P,Q的“肩三角形”面積為3,且拋物線y=ax2+bx+c與點P,Q的“肩三角形”恰有兩個交點時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘉淇同學利用業(yè)余時間進行射擊訓(xùn)練,一共射擊7次,經(jīng)過統(tǒng)計,制成如圖12所示的折線統(tǒng)計圖.
(1)這組成績的眾數(shù)是 ;
(2)求這組成績的方差;
(3)若嘉淇再射擊一次(成績?yōu)檎麛?shù)環(huán)),得到這8次射擊成績的中位數(shù)恰好就是原來7次成績的中位數(shù),求第8次的射擊成績的最大環(huán)數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com