如圖,⊙O與AB相切于點A,BO與⊙O交于點C,∠B=26°,則∠OCA=______度.
連接OA.
∵⊙O與AB相切于點A,
∴∠OAB=90°.
∵∠B=26°,
∴∠AOB=180°-∠OAB-∠B=180°-90°-26°=64°.
∵OA=OC,
∴∠1=∠2=
1
2
(180°-∠AOB)=
1
2
(180°-64°)=58°.
故∠2=58°,即∠OCA=58°.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點C,AC平分∠DAB.
(1)求證:AD⊥DC;
(2)若AD=
5
,DC=2,求sin∠CAB的值以及AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,AC是⊙O的直徑,AB和⊙O相交于E,BC和⊙O相切于C,D在BC上,DE是⊙O的切線,E是切點,
求證:(1)ODAB;
(2)2DE2=BE•OD;
(3)設(shè)BE=2,∠ODE=a,則cos2a=
1
OD

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

用一把帶有刻度的直角尺,
①可以畫出兩條平行的直線a與b,如圖(4)
②可以畫出∠AOB的平分線OP,如圖(2)
③可以檢驗工件的凹面是否成半圓,如圖(3)
④可以量出一個圓的半徑,如圖(4)

上述四個方法中,正確的個數(shù)是( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,EB為半圓O的直徑,點A在EB的延長線上,AD切半圓O于點D,BC⊥AD,垂足為C,若AB=2cm,半圓O的半徑為2cm,則BC的長為______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知點O為Rt△ABC斜邊AC上一點,以點O為圓心,OA長為半徑的⊙O與BC相切于點E,與AC相交于點D,連接AE.
(1)求證:AE平分∠CAB;
(2)探求圖中∠1與∠C的數(shù)量關(guān)系,并求當AE=EC時tanC的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠BAC=90度.BM平分∠ABC交AC于M,以A為圓心,AM為半徑作⊙A交BM于N,AN的延長線交BC于D,直線AB交⊙A于P,K兩點,作MT⊥BC于T.
(1)求證:AK=MT;
(2)求證:AD⊥BC;
(3)當AK=BD時,求證:
BN
BP
=
AC
BM

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,∠BAC=90°,AC=AB,直線l與以AB為直徑的圓相切于點B,點E是圓上異于A、B的任意一點.直線AE與l相交于點D.
(1)如果AD=10,BD=6,求DE的長;
(2)連接CE,過E作CE的垂線交直線AB于F.當點E在什么位置時,相應(yīng)的F位于線段AB上、位于BA的延長線上、位于AB的延長線上(寫出結(jié)果,不要求證明).無論點E如何變化,總有BD=BF.請你就上述三種情況任選一種說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,O1O2=7cm,⊙O1和⊙O2的半徑分別為2cm和3cm,O1O2交⊙O2于點P.
(1)若把⊙O1沿直線O1O2以每秒1cm的速度從左向右平移,經(jīng)過幾秒后⊙O1與⊙O2相切?
(2)若將⊙O1以每秒30°的速度繞點P順時針方向旋轉(zhuǎn)一周,則經(jīng)過幾秒后⊙O1與⊙O2相切?

查看答案和解析>>

同步練習冊答案