【題目】如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長(zhǎng)AD到E,且有∠EBD=∠CAB.
(1)求證:BE是⊙O的切線;
(2)若BC=,AC=5,求圓的直徑AD及切線BE的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)AD=6,BE=.
【解析】
試題分析:(1)先根據(jù)等弦所對(duì)的劣弧相等,再結(jié)合∠EBD=∠CAB從而得到∠BAD=∠EBD,最后用直徑所對(duì)的圓周角為直角即可;
(2)利用三角形的中位線先求出OF,再用平行線分線段成比例定理求出半徑R,最后用切割線定理即可.
試題解析:如圖,連接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直徑,∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵點(diǎn)B在⊙O上,∴BE是⊙O的切線;(2)如圖2,設(shè)圓的半徑為R,連接CD,∵AD為⊙O的直徑,∴∠ACCD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四邊形ACBD是圓內(nèi)接四邊形,∴∠BDE=∠ACB,∵∠DBE=∠ACB,∴△DBE∽△CAB,∴,∴,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴,∴,∵R>0,∴R=3,∴直徑AD=6.∵BE是⊙O的切線,∴BE===.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P是半徑為1的⊙O外一點(diǎn),PA切⊙O于點(diǎn)A,且PA=1,AB是⊙O的弦,AB=,連接PB,則PB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在開(kāi)展“學(xué)雷鋒社會(huì)實(shí)踐”活動(dòng)中,某校為了解全校1200名學(xué)生參加活動(dòng)的情況,隨機(jī)調(diào)查了50名學(xué)生每人參加活動(dòng)的次數(shù),并根據(jù)數(shù)據(jù)繪成條形統(tǒng)計(jì)圖如圖.
(Ⅰ)求這50個(gè)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅱ)根據(jù)樣本數(shù)據(jù),估算該校1200名學(xué)生共參加了多少次活動(dòng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,過(guò)點(diǎn)A(,0)的兩條直線分別交y軸于B、C兩點(diǎn),且B、C兩點(diǎn)的縱坐標(biāo)分別是一元二次方程的兩個(gè)根.
(1)求線段BC的長(zhǎng)度;
(2)試問(wèn):直線AC與直線AB是否垂直?請(qǐng)說(shuō)明理由;
(3)若點(diǎn)D在直線AC上,且DB=DC,求點(diǎn)D的坐標(biāo);
(4)在(3)的條件下,直線BD上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)從下列三類(lèi)試題中選答一題,
(1)小新出生時(shí)父親28歲,現(xiàn)在父親的年齡是小新的3倍,求現(xiàn)在小新的年齡.
(2)兩輛汽車(chē)從相距240 的兩地同時(shí)出發(fā)相向而行,甲車(chē)的速度比乙車(chē)的速度的2倍慢20 ,1.5h后兩車(chē)相遇,兩車(chē)的速度各是多少?
(3)用A4紙?jiān)谀匙u(yù)印社復(fù)印文件,復(fù)印頁(yè)數(shù)不超過(guò)20頁(yè)時(shí),每頁(yè)收費(fèi)0.12元;復(fù)印頁(yè)數(shù)超過(guò)20頁(yè)時(shí),超過(guò)部分每頁(yè)收費(fèi)0.09元,在圖書(shū)館復(fù)印同樣的文件,每頁(yè)收費(fèi)0.1元.復(fù)印張數(shù)為多少時(shí),兩處收費(fèi)相同?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,無(wú)限循環(huán)小數(shù)都可以轉(zhuǎn)化為分?jǐn)?shù).例如:將 轉(zhuǎn)化為分?jǐn)?shù)時(shí),可設(shè) =x,則x=0.3+ x,解得x= ,即 = .仿此方法,將 化成分?jǐn)?shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC沿BC方向平移3cm得到△DEF,若四邊形ABFD的周長(zhǎng)為22cm,則△ABC的周長(zhǎng)為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A(0,4)是直角坐標(biāo)系y軸上一點(diǎn),P是x軸上一動(dòng)點(diǎn),從原點(diǎn)O出發(fā),沿正半軸運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,以P為直角頂點(diǎn)在第一象限內(nèi)作等腰Rt△APB.設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒.
(1)若AB∥x軸,求t的值;
(2)設(shè)點(diǎn)B的坐標(biāo)為(x,y),試求y關(guān)于x的函數(shù)表達(dá)式;
(3)當(dāng)t=3時(shí),平面直角坐標(biāo)系內(nèi)有一點(diǎn)M(3,a),請(qǐng)直接寫(xiě)出使△APM為等腰三角形的點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com