【題目】探究與解決問題:已知中,,,求它的面積是多少?為此請你進行探究,并解答所提問題:
(1)已知三邊長求三角形面積,還需要知道什么?怎么作輔助線?
(2)解:作____________所得三角形和的邊之間有什么重要關(guān)系?
(3)設(shè),分別在兩個直角三角形中用含的式子表示,并完成解答,求出的面積.
【答案】(1)已知三邊長求三角形面積,還需要知道邊上的高,可以作BC上的高;
(2)作AD⊥BC,所得三角形和的邊之間有重要關(guān)系:AC2-CD2=AD2=AB2-BD2;
(3)19.
【解析】
(1)根據(jù)三角形的面積公式分析;(2)作AD⊥BC,得AC2-CD2=AD2=AB2-BD2;(3)根據(jù)勾股定理列出方程,可求出高.
解:(1)已知三邊長求三角形面積,還需要知道邊上的高,可以作BC上的高;
(2)作AD⊥BC,所得三角形和的邊之間有重要關(guān)系:AC2-CD2=AD2=AB2-BD2;
(3)設(shè),則CD=10-x,根據(jù)AC2-CD2=AD2=AB2-BD2,得
72-(10-x)2=52-x2=AD2
解得x=3.8;
所以S⊿ABC=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,點O是△ABC內(nèi)的一點,∠BOC=130°.
(1)由已知條件可知哪兩個三角形全等__________,理由_________.
(2)求∠DCO的大小.
(3)設(shè)∠AOB=α,那么當(dāng)α為多少度時,△COD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的有( )
①0減去一個數(shù),仍得這個數(shù);
②減去一個負數(shù),差一定大于被減數(shù);
③一個數(shù)的平方一定是正數(shù);
④有理數(shù)分為正數(shù)、負數(shù)和0的三部分;
⑤一個數(shù)的相反數(shù)不可能是它本身;
⑥-2與2都是相反數(shù);
⑦數(shù)軸上的點都表示有理數(shù);
⑧最小的整數(shù)是0;
⑨代數(shù)式是二次三項式;
⑩單項式的系數(shù)是,次數(shù)是6
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要建造一個四邊形花圃ABCD,要求AD邊靠墻,CD⊥AD,AD∥BC,AB∶CD=5∶4,且三邊的總長為20 m.設(shè)AB的長為5x m.
(1)請求AD的長;(用含字母x的式子表示)
(2)若該花圃的面積為50 m2,且周長不大于30 m,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直角三角形DEF與直角三角形ABC的斜邊在同一直線上,∠EDF=30°,∠ABC=40°,CD平分∠ACB,將△DEF繞點D按逆時針方向旋轉(zhuǎn),記∠ADF為α(0°<α<180°),在旋轉(zhuǎn)過程中;
(1)如圖2,當(dāng)∠α= 時,,當(dāng)∠α= 時,DE⊥BC;
(2)如圖3,當(dāng)頂點C在△DEF內(nèi)部時,邊DF、DE分別交BC、AC的延長線于點M、N,
①此時∠α的度數(shù)范圍是 ;
②∠1與∠2度數(shù)的和是否變化?若不變求出∠1與∠2度數(shù)和;若變化,請說明理由;
③若使得∠2≥2∠1,求∠α的度數(shù)范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小英與她的父親,母親計劃外出旅游,初步選擇了延安、西安、漢中、安康四個城市,由于時間倉促,他們只能去其中一個城市,到底去哪一個城市三人意見不統(tǒng)一,在這種情況下,小英父親建議,用小英學(xué)過的摸球游戲來決定,規(guī)則如下:
①在一個不透明的袋子中裝一個紅球(延安)、一個白球(西安)、一個黃球(漢中)和一個黑球(安康),這四個球除顏色的不同外,其余完全相同;
②小英父親先將袋中球搖勻,讓小英從袋中隨機摸出一球,父親記錄下其顏色,并將這個球放回袋中搖勻;然后讓小英母親從袋中隨機摸出一球,父親記錄下它的顏色;
③若兩人所摸出球的顏色相同,則去該球所表示的城市旅游。否則,前面的記錄作廢,按規(guī)則②重新摸球,直到兩人所摸出的球的顏色相同為止。
按照上面的規(guī)則,請你解答下列問題:
(1)已知小英的理想旅游城市是西安,小英和母親隨機各摸球一次,均摸出白球的概率是多少?
(2)已知小英母親的理想旅游城市是漢中,小英和母親隨機各摸球一次,至少有一人摸出黃球的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=-x+6和反比例函數(shù)y=(k≠0)
(1)k滿足什么條件時,這兩個函數(shù)在同一坐標(biāo)系xOy中的圖象有兩個公共點?
(2)設(shè)(1)的兩個公共點分別為A、B,∠AOB是銳角還是鈍角?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價150元銷售,最后剩下50件按八折優(yōu)惠賣出,求兩批襯衫全部售完后利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com