【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣4,0),B(2,0),與y軸交于點C(0,2).
(1)求拋物線的解析式;
(2)若點D為該拋物線上的一個動點,且在直線AC上方,當(dāng)以A,C,D為頂點的三角形面積最大時,求點D的坐標(biāo)及此時三角形的面積.
【答案】
(1)解:根據(jù)題意設(shè)拋物線解析式為y=a(x+4)(x﹣2),
把C(0,2)代入得:﹣8a=2,即a=﹣ ,
則拋物線解析式為y=﹣ (x+4)(x﹣2)=﹣ x2﹣ x+2
(2)解:過點D作DH⊥AB于點H,交直線AC于點G,連接DC,AD,如圖所示,
設(shè)直線AC解析式為y=kx+t,則有 ,
解得: ,
∴直線AC解析式為y= x+2,
設(shè)點D的橫坐標(biāo)為m,則G橫坐標(biāo)也為m,
∴DH=﹣ m2﹣ m+2,GH= m+2,
∴DG=﹣ m2﹣ m+2﹣ m﹣2=﹣ m2﹣m,
∴S△ADC=S△ADG+S△CDG= DGAH+ DGOH= DGAO=2DG=﹣ m2﹣2m=﹣ (m2+4m)=﹣ [(m+2)2﹣4]=﹣ (m+2)2+2,
當(dāng)m=﹣2時,S△ADC取得最大值2,此時yD=﹣ ×(﹣2)2﹣ ×(﹣2)+2=2,即D(﹣2,2).
【解析】(1)根據(jù)A與B坐標(biāo)設(shè)出拋物線解析式,將C坐標(biāo)代入即可求出;(2)過點D作DH⊥AB于點H,交直線AC于點G,連接DC,AD,如圖所示,利用待定系數(shù)法求出直線AC解析式,設(shè)D橫坐標(biāo)為m,則有G橫坐標(biāo)也為m,表示出DH與GH,由DH﹣GH表示出DG,三角形ADC面積=三角形ADG面積+三角形DGC面積,表示出面積與m的關(guān)系式,利用二次函數(shù)性質(zhì)確定出面積的最大值,以及此時m的值,即此時D的坐標(biāo)即可.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的最值的相關(guān)知識,掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)x=-b/2a時,y最值=(4ac-b2)/4a,以及對拋物線與坐標(biāo)軸的交點的理解,了解一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知點,,,a是的立方根,方程是關(guān)于x,y的二元一次方程,d為不等式組的最大整數(shù)解.
求點A、B、C的坐標(biāo);
如圖1,若D為y軸負(fù)半軸上的一個動點,當(dāng)時,與的平分線交于M點,求的度數(shù);
如圖2,若D為y軸負(fù)半軸上的一個動點,連BD交x軸于點E,問是否存在點D,使?若存在,請求出D的縱坐標(biāo)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°D為AB邊上一點.
求證:(1)△ACE△BCD;
(2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水利部確定每年的3月22日至28日為“中國水周”(1994年以前為7月1日至7日),從1991年起,我國還將每年5月的第二周作為城市節(jié)約用水宣傳周.某社區(qū)為了進(jìn)一步提高居民珍惜水、保護(hù)水和水憂患意識,提倡節(jié)約用水,從本社區(qū)5000戶家庭中隨機抽取100戶,調(diào)查他們家庭每月的平均用水量,并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖表:
請根據(jù)上面的統(tǒng)計圖表,解答下列問題:
(1)在頻數(shù)分布表中:m= ,n= ;
(2)根據(jù)題中數(shù)據(jù)補全頻數(shù)直方圖;
(3)如果自來水公司將基本月用水量定為每戶每月12噸,不超過基本月用水量的部分享受基本價格,超出基本月用水量的部分實行加價收費,那么該社區(qū)用戶中約有多少戶家庭能夠全部享受基本價格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上一點,且AB=14.動點P從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為t(t>0)秒.
(1)寫出數(shù)軸上點B表示的數(shù) ,點P表示的數(shù) (用含t的代數(shù)式表示);
(2)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時追上點Q?
(3)若M為AP的中點,N為PB的中點.點P在運動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點O逆時針方向旋轉(zhuǎn)90°
得到△OA1B1 .
(1)線段A1B1的長是 , ∠AOA1的度數(shù)是;
(2)連結(jié)AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求四邊形OAA1B1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度;已知△ABC.
(1)作出△ABC關(guān)于x軸對稱的△A1B1C1 , (只畫出圖形).
(2)作出△ABC關(guān)于原點O成中心對稱的△A2B2C2 , (只畫出圖形),寫出B2和C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系(如圖1),y軸是拋物線的對稱軸,頂點E到坐標(biāo)原點O的距離為6m.
(1)求拋物線的解析式;
(2)現(xiàn)有一輛貨運卡車,高4.4m,寬2.4m,它能通過該隧道嗎?
(3)如果該隧道內(nèi)設(shè)雙向道(如圖2),為了安全起見,在隧道正中間設(shè)有0.4m的隔離帶,則該輛貨運卡車還能通過隧道嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com