【題目】將紙片ABC沿DE折疊使點(diǎn)A落在點(diǎn)A’.

(感知)如圖①,點(diǎn)A’落在四邊形BCDE的邊BE上,則∠A與∠1之間的數(shù)量關(guān)系是 .

(探究)如圖②,若A’點(diǎn)落在四邊形BCDE的內(nèi)部,則∠A與∠1+2之間存在怎樣的數(shù)量關(guān)系?并說(shuō)明理由?

(拓展)如圖③,點(diǎn)A’落在四邊形BCDE的外部,若∠1=80°,∠2=24°,則∠A的大小為 .

【答案】感知:2A=∠1 ;探究:2A=∠1+2,理由詳見(jiàn)解析;拓展:28

【解析】

感知: 運(yùn)用折疊原理及三角形的外角性質(zhì)即可解決問(wèn)題;
探究: 運(yùn)用折疊原理及四邊形的內(nèi)角和定理即可解決問(wèn)題;
拓展: 運(yùn)用三角形的外角性質(zhì)即可解決問(wèn)題.

感知:2A=21,
理由:如圖①:

∵延DE折疊AA′重合,
∴∠AED=A′ED,∠ADE=A′DE
∵∠AED+ADE=180°-A,
1+2=180°+180°-2(∠AED+ADE),
∴∠1+2=360°-2180°-A=2A;

探究: 2A=1+2
理由如下:如圖②:

∵∠1+A′DA+2+A′EA=360°
A+A′+A′DA+A′EA=360°,
∴∠A′+A=1+2,
由折疊知識(shí)可得:∠A=A′,
2A=1+2

拓展:

如圖③,

∵∠1=DFA+A,∠DFA=A′+2
∴∠1=A+A′+2=2A+2,
2A=1-2=56°,
解得∠A=28°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店計(jì)劃購(gòu)進(jìn),兩種型號(hào)的電機(jī),其中每臺(tái)型電機(jī)的進(jìn)價(jià)比型多元,且用元購(gòu)進(jìn)型電機(jī)的數(shù)量與用元購(gòu)進(jìn)型電機(jī)的數(shù)量相等.

1)求兩種型號(hào)電機(jī)的進(jìn)價(jià);

2)該商店打算用不超過(guò)元的資金購(gòu)進(jìn)兩種型號(hào)的電機(jī)共臺(tái),至少需要購(gòu)進(jìn)多少臺(tái)型電機(jī)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知一次函數(shù)y=kx+bk≠0)的圖象與x軸、y軸的交點(diǎn)分別為A、B兩點(diǎn).且與反比例函數(shù)y=m≠0)的圖象在第一象限交于點(diǎn)C,CD垂直于x軸,垂足為D,若OA=OB=OD=1.

(1)一次函數(shù)和反比例函數(shù)的解析式;

(2)求ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),連接PAPB、PC.

(1)將△PAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△PCB,AB=m,PB=n(n<m).求△PAB旋轉(zhuǎn)過(guò)程中邊PA掃過(guò)區(qū)域(陰影部分)的面積;

(2)PA= ,PB=2,APB=135°,求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y=mx+n的圖像與x軸交于點(diǎn)B,與反比例函數(shù)(k0)的圖像交于點(diǎn)C,過(guò)點(diǎn)CCHx軸,點(diǎn)D是反比例函數(shù)圖像上的一點(diǎn),直線(xiàn)CDx軸交于點(diǎn)A,若HCB=∠HCA,且BC=10,BA=16

1)若OA=11,求k的值;

2)沿著x軸向右平移直線(xiàn)BC,若直線(xiàn)經(jīng)過(guò)H點(diǎn)時(shí)恰好又經(jīng)過(guò)點(diǎn)D,求一次函數(shù)函數(shù)y=mx+n的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀可以增進(jìn)人們的知識(shí),也能陶冶人們的情操.我們要多閱讀有營(yíng)養(yǎng)的書(shū).某校對(duì)學(xué)生的課外閱讀時(shí)間進(jìn)行了抽樣調(diào)查,將收集的數(shù)據(jù)分成A,B,C,D,E五組進(jìn)行整理,并繪制成如圖所示的統(tǒng)計(jì)圖表(圖中信息不完整).

閱讀時(shí)間分組統(tǒng)計(jì)表

組別

閱讀時(shí)間x(h)

人數(shù)

A

0≤x<10

a

B

10≤x<20

100

C

20≤x<30

b

D

30≤x<40

140

E

x≥40

c

請(qǐng)結(jié)合以上信息解答下列問(wèn)題:

(1)求a,b,c的值;

(2)補(bǔ)全“閱讀人數(shù)分組統(tǒng)計(jì)圖”;

(3)估計(jì)全校課外閱讀時(shí)間在20h以下(不含20h)的學(xué)生所占百分比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:

在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等, ,利用上述結(jié)論可以求解如下題目:

ABC中,∠AB、C的對(duì)邊分別為a,bc.若∠A=45°,B=30°,a=6,求b

解:在ABC中,∵

b=.

理解應(yīng)用:

如圖,甲船以每小時(shí)30海里的速度向正北方向航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線(xiàn)航行,當(dāng)甲船航行20分鐘到達(dá)A2時(shí),乙船航行到甲船的北偏西120°方向的B2處,此時(shí)兩船相距10海里.

1)判斷A1A2B2的形狀,并給出證明;

2)求乙船每小時(shí)航行多少海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,過(guò)點(diǎn)O作弦AD的垂線(xiàn)交半圓O于點(diǎn)E,交AC于點(diǎn)C,使BED=C.

(1)判斷直線(xiàn)AC與圓O的位置關(guān)系,并證明你的結(jié)論;

(2)若AC=8,cosBED=,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(a),直線(xiàn)l1ykx+b經(jīng)過(guò)點(diǎn)A、BOAOB3,直線(xiàn)12yx2y軸于點(diǎn)C,且與直線(xiàn)l1交于點(diǎn)D,連接OD

1)求直線(xiàn)11的表達(dá)式;

2)求△OCD的面積;

3)如圖(b),點(diǎn)P是直線(xiàn)11上的一動(dòng)點(diǎn);連接CP交線(xiàn)段OD于點(diǎn)E,當(dāng)△COE與△DEP的面積相等時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案