某職業(yè)學(xué)校三名學(xué)生到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作,已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話。
A:如果以10元/千克的價(jià)格銷售,那么每天可售出300千克.
B:如果以13元/千克的價(jià)格銷售,那么每天可獲取利潤(rùn)750元.
C:通過(guò)調(diào)查驗(yàn)證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價(jià)x(元)之間存在一次函數(shù)關(guān)系.
(1)求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為何值時(shí),該超市銷售這種水果每天獲取的利潤(rùn)達(dá)到600元?【利潤(rùn)=銷售量×(銷售單價(jià)-進(jìn)價(jià))】
(3)一段時(shí)間后,發(fā)現(xiàn)這種水果每天的銷售量均不低于225千克.則此時(shí)該超市銷售這種水果每天獲取的最大利潤(rùn)是多少?
(1)y=-50x+800(x>0);(2)10或14元;(3)787.5元.

試題分析:(1)以10元/千克的價(jià)格銷售,那么每天可售出300千克;以13元/千克的價(jià)格銷售,那么每天可獲取利潤(rùn)750元.就相當(dāng)于直線過(guò)點(diǎn)(10,300),(13,150),然后列方程組解答即可.
(2)根據(jù)利潤(rùn)=銷售量×(銷售單價(jià)-進(jìn)價(jià))寫出解析式,W=(-50x+800)(x-8)=600求出即可;
(3)由二次函數(shù)的性質(zhì)以及利用配方法求最大值,自變量的取值范圍解答這一問(wèn)題.
試題解析:(1)當(dāng)銷售單價(jià)為13元/千克時(shí),銷售量為:千克
設(shè)y與x的函數(shù)關(guān)系式為:y=kx+b(k≠0)
把(10,300),(13,150)分別代入得:
,
解得
故y與x的函數(shù)關(guān)系式為:y=-50x+800(x>0)
(2)設(shè)每天水果的利潤(rùn)w元,
∵利潤(rùn)=銷售量×(銷售單價(jià)-進(jìn)價(jià))
∴W=(-50x+800)(x-8)=600
0=-50(x-12)2+200
解得:x1=10,x2=14.
∴當(dāng)銷售單價(jià)為10或14元時(shí),每天可獲得的利潤(rùn)是600元.
(3)W=(-50x+800)(x-8)=-50x2+1200x-6400=-50(x-12)2+800
又∵水果每天的銷售量均低于225kg,水果的進(jìn)價(jià)為8元/千克,
∴-50x+800≥225,
∴x≤11.5,
∴當(dāng)x=11.5時(shí),W最大=787.5(元).
答:此時(shí)該超市銷售這種水果每天獲取的利潤(rùn)最大是787.5元.
考點(diǎn): 二次函數(shù)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將二次函數(shù)y=x2的圖象向下平移一個(gè)單位,則平移以后的二次函數(shù)的解析式為(  )
A.y=x2-1B.y=x2+1
C.y=(x-1)2D.y=(x+1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)的圖像一定不經(jīng)過(guò)(    )
A.第一象限;B.第二象限;C.第三象限;D.第四象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果拋物線y=mx²+(m-3)x-m+2經(jīng)過(guò)原點(diǎn),那么m的值等于(  )
A.0;B.1;C.2;D.3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知OA=12cm,OB=6cm,點(diǎn)P從O點(diǎn)開(kāi)始沿OA邊向點(diǎn)A以1cm/s的速度移動(dòng):點(diǎn)Q從點(diǎn)B開(kāi)始沿BO邊向點(diǎn)O以1cm/s的速度移動(dòng),如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(),那么:

(1)設(shè)△POQ的面積為,求關(guān)于的函數(shù)解析式。
(2)當(dāng)△POQ的面積最大時(shí),△  POQ沿直線PQ翻折后得到△PCQ,試判斷點(diǎn)C是否落在直線AB上,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若拋物線的圖象最高點(diǎn)的縱坐標(biāo)為0,則m的值為          

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖①,在平行四邊形ABCD中,AB=12,BC=6,AD⊥BD.以AD為斜邊在平行四邊形ABCD的內(nèi)部作Rt△AED,∠EAD=30°,∠AED=90°.

(1)求△AED的周長(zhǎng);
(2)若△AED以每秒2個(gè)單位長(zhǎng)度的速度沿DC向右平行移動(dòng),得到△A0E0D0,當(dāng)A0D0與BC重合時(shí)停止移動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,△A0E0D0與△BDC重疊的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)如圖②,在(2)中,當(dāng)△AED停止移動(dòng)后得到△BEC,將△BEC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)α(0°<α<180°),在旋轉(zhuǎn)過(guò)程中,B的對(duì)應(yīng)點(diǎn)為B1,E的對(duì)應(yīng)點(diǎn)為E1,設(shè)直線B1E1與直線BE交于點(diǎn)P、與直線CB交于點(diǎn)Q.是否存在這樣的α,使△BPQ為等腰三角形?若存在,求出α的度數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對(duì)稱軸為x=-1,且過(guò)點(diǎn)(-3,0).下列說(shuō)法:①abc<0;②2a-b=0;③4a+2b+c<0;④3a+c=0;則其中說(shuō)法正確的是( 。
A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)的頂點(diǎn)坐標(biāo)是(   )
A.(1,-2)B.(1,2)
C.(0,-2)D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案