【題目】如圖,拋物線x軸于AB兩點,交y軸于點C.直線經(jīng)過點A,C

1)求拋物線的解析式;

2)點P是拋物線上一動點,過點Px軸的垂線,交直線AC于點M,設(shè)點P的橫坐標(biāo)為m

①當(dāng)是直角三角形時,求點P的坐標(biāo);

②作點B關(guān)于點C的對稱點,則平面內(nèi)存在直線l,使點M,B,到該直線的距離都相等.當(dāng)點Py軸右側(cè)的拋物線上,且與點B不重合時,請直接寫出直線的解析式.(k,b可用含m的式子表示)

【答案】12)①,②直線l的解析式為,.

【解析】

1)利用一次函數(shù)圖象上點的坐標(biāo)特征可求出點A,C的坐標(biāo),根據(jù)點AC的坐標(biāo),利用待定系數(shù)法可求出二次函數(shù)解析式;
2)①由PMx軸可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°兩種情況考慮:(i)當(dāng)∠MPC=90°時,PCx軸,利用二次函數(shù)圖象上點的坐標(biāo)特征可求出點P的坐標(biāo);(ii)當(dāng)∠PCM=90°時,設(shè)PCx軸交于點D,易證AOC∽△COD,利用相似三角形的性質(zhì)可求出點D的坐標(biāo),根據(jù)點CD的坐標(biāo),利用待定系數(shù)法可求出直線PC的解析式,聯(lián)立直線PC和拋物線的解析式成方程組,通過解方程組可求出點P的坐標(biāo).綜上,此問得解;
②利用二次函數(shù)圖象上點的坐標(biāo)特征及一次函數(shù)圖象上點的坐標(biāo)特征可得出點BM的坐標(biāo),結(jié)合點C的坐標(biāo)可得出點B′的坐標(biāo),根據(jù)點M,BB′的坐標(biāo),利用待定系數(shù)法可分別求出直線BMB′MBB′的解析式,利用平行線的性質(zhì)可求出直線l的解析式.

解:(1)當(dāng)時,,

C的坐標(biāo)為;

當(dāng)時,,

解得:

A的坐標(biāo)為

,代入,得:

,解得:,

拋物線的解析式為

2)①軸,

,

分兩種情況考慮,如圖1所示.

i)當(dāng)時,軸,

P的縱坐標(biāo)為﹣2

當(dāng)時,,

解得:,

P的坐標(biāo)為;

ii)當(dāng)時,設(shè)PCx軸交于點D

,

,

,

,即,

D的坐標(biāo)為

設(shè)直線PC的解析式為,

,代入,得:

,解得:,

直線PC的解析式為

聯(lián)立直線PC和拋物線的解析式成方程組,得:,

解得:,

P的坐標(biāo)為

綜上所述:當(dāng)是直角三角形時,點P的坐標(biāo)為

②當(dāng)y=0時,,

解得:x1=-4x2=2,
∴點B的坐標(biāo)為(2,0).
∵點C的坐標(biāo)為(0-2),點BB′關(guān)于點C對稱,
∴點B′的坐標(biāo)為(-2,-4).
∵點P的橫坐標(biāo)為mm0m≠2),
∴點M的坐標(biāo)為,

利用待定系數(shù)法可求出:直線BM的解析式為,直線B′M的解析式為,直線BB′的解析式為y=x-2
分三種情況考慮,如圖2所示:


當(dāng)直線lBM且過點C時,直線l的解析式為,

當(dāng)直線lB′M且過點C時,直線l的解析式為,

當(dāng)直線lBB′且過線段CM的中點時,直線l的解析式為,

綜上所述:直線l的解析式為,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(4分)一元二次方程的根的情況是(

A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根

C.沒有實數(shù)根 D無法確定

【答案】A

【解析】

試題∵△=,方程有兩個不相等的實數(shù)根.故選A.

考點:根的判別式

型】單選題
結(jié)束】
9

【題目】已知直線y=kx(k>0)與雙曲線交于點A(x1,y1),B(x2,y2)兩點,則x1y2+x2y1的值為【 】

A.﹣6 B.﹣9 C.0 D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級6個班的180名學(xué)生即將參加北京市中學(xué)生開放性科學(xué)實踐活動送課到校課程的學(xué)習(xí).學(xué)習(xí)內(nèi)容包括以下7個領(lǐng)域:A.自然與環(huán)境,B.健康與安全,C.結(jié)構(gòu)與機械,D.電子與控制,E.?dāng)?shù)據(jù)與信息,F(xiàn).能源與材料,G.人文與歷史.為了解學(xué)生喜歡的課程領(lǐng)域,學(xué)生會開展了一次調(diào)查研究,請將下面的過程補全.

收集數(shù)據(jù)學(xué)生會計劃調(diào)查30名學(xué)生喜歡的課程領(lǐng)域作為樣本,下面抽樣調(diào)查的對象選擇合理的是  ;(填序號)

①選擇七年級1班、2班各15名學(xué)生作為調(diào)查對象

②選擇機器人社團的30名學(xué)生作為調(diào)查對象

③選擇各班學(xué)號為6的倍數(shù)的30名學(xué)生作為調(diào)查對象

調(diào)查對象確定后,調(diào)查小組獲得了30名學(xué)生喜歡的課程領(lǐng)域如下:

A,C,D,D,G,G,F(xiàn),E,B,G,

C,C,G,D,B,A,G,F(xiàn),F(xiàn),A,

G,B,F(xiàn),G,E,G,A,B,G,G

整理、描述數(shù)據(jù)整理、描述樣本數(shù)據(jù),繪制統(tǒng)計圖表如下,請補全統(tǒng)計表和統(tǒng)計圖.

某校七年級學(xué)生喜歡的課程領(lǐng)域統(tǒng)計表

課程領(lǐng)域

人數(shù)

A

4

B

4

C

3

D

3

E

2

F

 4 

G

 10 

合計

30

分析數(shù)據(jù)、推斷結(jié)論請你根據(jù)上述調(diào)查結(jié)果向?qū)W校推薦本次送課到校的課程領(lǐng)域,你的推薦是  (填A(yù)﹣G的字母代號),估計全年級大約有  名學(xué)生喜歡這個課程領(lǐng)域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx與雙曲線yk0,x0)交于點A,將直線yx向上平移2個單位長度后,與y軸交于點C,與雙曲線交于點B,若OA3BC,則k的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小澤和小帥兩同學(xué)分別從甲地出發(fā),騎自行車沿同一條路到乙地參加社會實踐活動.如圖折線和線段分別表示小澤和小帥離甲地的距離(單位:千米)與時間(單位:小時)之間函數(shù)關(guān)系的圖象,則當(dāng)小帥到達(dá)乙地時,小澤距乙地的距離為_________千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019325日是全國中小學(xué)生安全教育日,前進中學(xué)為加強學(xué)生的安全意識,組全校學(xué)生參加安全知識競賽,從中抽取了部分學(xué)生成績(得分取正整數(shù),滿分為100),各等級進行統(tǒng)計(級.-分;級.分;級.分;級.分;級.),并將統(tǒng)計結(jié)果繪制成如下兩幅尚不完整的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:

1_______

2)補全頻數(shù)分布直方圖;

3)該校共有名學(xué)生.若成績在分以下()的學(xué)生安全意識不強,有待進.步加強安全教育,則該校安全意識不強的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汽車產(chǎn)業(yè)的發(fā)展,有效促進我國現(xiàn)代化建設(shè).某汽車銷售公司2016年盈利1500萬元,到2018年盈利2160萬元,且從2016年到2018年,每年盈利的年增長率相同.

1)求每年盈利的年增長率;

2)若該公司盈利的年增長率繼續(xù)保持不變,那么2019年該公司盈利能否達(dá)到2500萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[閱讀理解]

我們知道:,那么結(jié)果等于多少呢?

在圖1所示的等邊三角形數(shù)陣中,第行的一個小等邊三角形中的數(shù)為,即行的三個小等邊三角形中的數(shù)的和是; ..第行的個小等邊三角形中的數(shù)的和是個,即,該等邊三角形數(shù)陣中共有小等邊三角形,所有小等邊三角形數(shù)的和為

[規(guī)律探究]

以圖1中的等邊三角形數(shù)陣的右底角頂點為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)再把旋轉(zhuǎn)后的圖形按同樣的方法可得如圖2所示的三角形數(shù)陣,觀察這三個等邊三角形數(shù)陣各行同一位置的小等邊三角形中的數(shù),發(fā)現(xiàn)位于奇數(shù)位置的三個數(shù)(如第行的第個小三角形中的數(shù)分別為的和為;發(fā)現(xiàn)位于偶數(shù)位置的三個數(shù)(如第行的第個小三角形中的數(shù)分別為的和為;而每個等邊三角形數(shù)陣中,由于位于奇數(shù)位置的數(shù)比位于偶數(shù)位置的數(shù)多個,則位于偶數(shù)位置的數(shù)有_

,位于奇數(shù)位置的數(shù)有 個, 由此可得,這三個等邊三角形數(shù)陣所有數(shù)的總和為:

因此,

[解決問題]根據(jù)以上發(fā)現(xiàn),計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,M,N分別為銳角∠AOB的邊OA,OB上的點,ON=6,把△OMN沿MN折疊,點O落在點C處,MCOB交于點P,若MN=MP=5,則PN=(  )

A.2B.3C.D.

查看答案和解析>>

同步練習(xí)冊答案