【題目】元旦期間,丹東新一百商城銷售兩種商品,種商品每件進價元,售價元;種商品每件售價元,利潤率為.

1)每件種商品利潤率為 種商品每件進價為 元;

2)由于熱銷,商城決定再購進上面的兩種商品共件(每件商品的進價不變),采購部預算共支出元,財務部算了一下,說:“如果你用這些錢買兩種商品,那么賬肯定算錯了!”請你用學過的方程知識解釋財務部為什么會這樣說?

【答案】1;(2)財務部說法是正確的.

【解析】

1)根據(jù)利潤率=利潤成本,利潤=售價-成本,列式即可求得答案;

2)首先設(shè)出購進A商品的件數(shù),然后根據(jù)同時購進甲、乙兩種商品共40表示出購進B商品的件數(shù);然后根據(jù)恰好用去4950列方程求出未知數(shù)的值,即可得解.

1)每件種商品利潤率為:;

設(shè)種商品每件進價為,

依題意得:,

解得:

故答案為:;;

2)解:設(shè)購進種商品.

根據(jù)題意得:

解得

因為不是整數(shù),故財務部說法是正確的.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料,并回答問題

鐘表中蘊含著有趣的數(shù)學運算,不用負數(shù)也可以作減法,例如現(xiàn)在是10點鐘,4小時以后是幾點鐘?雖然,但在表盤上看到的是2點鐘.如果用符號表示鐘表上的加法,則.若問2點鐘之前4小時是幾點鐘,就得到鐘表上的減法概念,,用符號表示鐘表上的減法.(注:我們用0點鐘代替12點鐘)由上述材料可知:

1______,______

2)在有理數(shù)運算中,相加得零的兩個數(shù)互為相反數(shù),如果在鐘表運算中沿用這個概念,則5的相反數(shù)是______,舉例說明有理數(shù)減法法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù),在鐘表運算中是否仍然成立;

3)規(guī)定在鐘表運算中也有,對于鐘表上的任意數(shù)字,,,若,判斷是否一定成立,若一定成立,說明理由;若不一定成立,寫出一組反例,并結(jié)合反例加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點,,在同一條直線上,,的中點,.

1)圖中共有直線______條,線段______條,射線______條;

2)求線段的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=kx2+(k﹣2)x﹣2(其中k0).

(1)求該拋物線與x軸的交點及頂點的坐標(可以用含k的代數(shù)式表示);

(2)若記該拋物線頂點的坐標為P(m,n),直接寫出|n|的最小值;

3)將該拋物線先向右平移個單位長度,再向上平移個單位長度,隨著k的變化,平移后的拋物線的頂點都在某個新函數(shù)的圖象上,求新函數(shù)的解析式(不要求寫自變量的取值范圍).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖是由大小相同的小立方體搭乘的幾何體:

1)請在所給的方格中畫出該幾何體從上面看和從左面看的兩個圖形;

2)現(xiàn)在你的手里還有一些相同的小立方塊,如果保持從上面來看和從左面看所得到的圖形不變,則在左邊的立體圖形中最多可以添加 個小立方塊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點在數(shù)軸上對應的數(shù)為,點對應的數(shù)為,且G為線段上一點,兩點分別從點沿方向同時運動,設(shè)點的運動速度為點的運動速度為,運動時間為.

1點對應的數(shù)為 ,點對應的數(shù)為

2)若,試求為多少時,兩點的距離為;

3)若,點為數(shù)軸上任意一點,且,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)已知∠ABC=90°,∠CBD=30°,BP平分∠ABD,請補全圖形,并求∠ABP的度數(shù).

2)在(1)的條件下,若∠ABC=α,∠CBD=β,直接寫出∠ABP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料,并回答問題:

材料:數(shù)學課上,老師給出了如下問題.

如圖1,點AB、C均在直線l上,AB = 8,BC = 2MAC的中點,求AM的長.

小明的解答過程如下:

解:如圖2,

AB = 8BC = 2,

AC = ABBC = 82 = 6

MAC的中點,

).

小芳說:“小明的解答不完整”.

問題:(1)小明解答過程中的“①”為 ;

2 你同意小芳的說法嗎?如果同意,請將小明的解答過程補充完整;如果不同意,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB80°,∠BOC20°,OE平分∠AOC,則∠AOE_____

查看答案和解析>>

同步練習冊答案