【題目】在△ABC中,CA=CB=3,∠ACB=120°,將一塊足夠大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如圖所示放置,頂點(diǎn)P在線段AB上滑動(dòng),三角尺的直角邊PM始終經(jīng)過點(diǎn)C,并且與CB的夾角∠PCB=α,斜邊PN交AC于點(diǎn)D.
(1)當(dāng)PN∥BC時(shí),判斷△ACP的形狀,并說明理由.
(2)在點(diǎn)P滑動(dòng)的過程中,當(dāng)AP長度為多少時(shí),△ADP≌△BPC,為什么?
(3)在點(diǎn)P的滑動(dòng)過程中,△PCD的形狀可以是等腰三角形嗎?若不可以,請(qǐng)說明理由;若可以,請(qǐng)直接寫出α的度數(shù).
【答案】(1)直角三角形,理由見解析;(2)當(dāng)AP=3時(shí),△ADP≌△BPC,理由見解析;(3)當(dāng)α=45°或90°或0°時(shí),△PCD是等腰三角形
【解析】
(1)由PN與BC平行,得到一對(duì)內(nèi)錯(cuò)角相等,求出∠ACP為直角,即可得證;
(2)當(dāng)AP=3時(shí),△ADP與△BPC全等,理由為:根據(jù)CA=CB,且∠ACB度數(shù),求出∠A與∠B度數(shù),再由外角性質(zhì)得到∠α=∠APD,根據(jù)AP=BC,利用ASA即可得證;
(3)點(diǎn)P在滑動(dòng)時(shí),△PCD的形狀可以是等腰三角形,分三種情況考慮:當(dāng)PC=PD;PD=CD;PC=CD,分別求出夾角α的大小即可.
(1)當(dāng)PN∥BC時(shí),∠α=∠NPM=30°,
又∵∠ACB=120°,
∴∠ACP=120°-30°=90°,
∴△ACP是直角三角形;
(2)當(dāng)AP=3時(shí),△ADP≌△BPC,
理由為:∵∠ACB=120°,CA=CB,
∴∠A=∠B=30°,
又∵∠APC是△BPC的一個(gè)外角,
∴∠APC=∠B+α=30°+α,
∵∠APC=∠DPC+∠APD=30°+∠APD,
∴∠APD=α,
又∵AP=BC=3,
∴△ADP≌△BPC;
(3)△PCD的形狀可以是等腰三角形,
則∠PCD=120°-α,∠CPD=30°,
①當(dāng)PC=PD時(shí),△PCD是等腰三角形,
∴∠PCD=∠PDC==75°,即120°-α=75°,
∴∠α=45°;
②當(dāng)PD=CD時(shí),△PCD是等腰三角形,
∴∠PCD=∠CPD=30°,即120°-α=30°,
∴α=90°;
③當(dāng)PC=CD時(shí),△PCD是等腰三角形,
∴∠CDP=∠CPD=30°,
∴∠PCD=180°-2×30°=120°,
即120°-α=120°,
∴α=0°,
此時(shí)點(diǎn)P與點(diǎn)B重合,點(diǎn)D和A重合,
綜合所述:當(dāng)α=45°或90°或0°時(shí),△PCD是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).
(1)請(qǐng)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);
(2)請(qǐng)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2,并寫出點(diǎn)A2、C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)商場在同一周內(nèi)經(jīng)營同一種商品,每天的獲利情況如下表:
日期 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期天 |
甲商場獲利/萬元 | 2.5 | 2.4 | 2.8 | 3 | 3.2 | 3.5 | 3.6 |
乙商場獲利/萬元 | 1.9 | 2.3 | 2.7 | 2.6 | 3 | 4 | 4.5 |
(1)請(qǐng)你計(jì)算出這兩個(gè)商場在這周內(nèi)每天獲利的平均數(shù),并說明這兩個(gè)商場本周內(nèi)總的獲利情況;
(2)在圖所示的網(wǎng)格圖內(nèi)畫出兩個(gè)商場每天獲利的折線圖;(甲商場用虛線,乙商場用實(shí)線)
(3)根據(jù)折線圖,請(qǐng)你預(yù)測(cè)下周一哪個(gè)商場的獲利會(huì)多一些并簡單說出你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形的對(duì)角線、相交于點(diǎn)O,.
(1)如圖1,過B作于E,若,,求的長;
(2)如圖2,若,過點(diǎn)C作交于點(diǎn)F,過點(diǎn)B作且,連接.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù)的圖象交于C、D兩點(diǎn),DE⊥x軸于點(diǎn)E,已知C點(diǎn)的坐標(biāo)是(6,﹣1),DE=3.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)求△CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A. 有兩條邊相等的兩個(gè)等腰三角形全等
B. 兩腰對(duì)應(yīng)相等的兩個(gè)等腰三角形全等
C. 兩角對(duì)應(yīng)相等的兩個(gè)等腰三角形全等
D. 一邊對(duì)應(yīng)相等的兩個(gè)等邊三角形全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:“四個(gè)頂點(diǎn)都在三角形邊上的正方形是三角形的內(nèi)接正方形”.已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.
(1)如圖l,四邊形CDEF是△ABC的內(nèi)接正方形,則正方形CDEF的邊長a1是________;
(2)如圖2,四邊形DGHI是(1)中△EDA的內(nèi)接正方形,那么第2個(gè)正方形DGHI的邊長記為a2;繼續(xù)在圖2中的△HGA中按上述方法作第3個(gè)內(nèi)接正方形……以此類推,則第n個(gè)內(nèi)接正方形的邊長an=____. (n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn) M 的坐標(biāo)為(4,3),點(diǎn) M 關(guān)于直線 l:y=﹣x+b 的對(duì)稱點(diǎn)落在坐標(biāo)軸上,則 b的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,點(diǎn)P由C點(diǎn)出發(fā)以2m/s的速度向終點(diǎn)A勻速移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B出發(fā)以1m/s的速度向終點(diǎn)C勻速移動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也隨之停止移動(dòng).
(1)經(jīng)過幾秒△PCQ的面積為△ACB的面積的?
(2)經(jīng)過幾秒,△PCQ與△ACB相似?
(3)如圖2,設(shè)CD為△ACB的中線,那么在運(yùn)動(dòng)的過程中,PQ與CD有可能互相垂直嗎?若有可能,求出運(yùn)動(dòng)的時(shí)間;若沒有可能,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com