【題目】甲、乙兩地相距360千米,一輛販毒車從甲地往乙地接頭取貨,警方截取情報后,立即組織干警從甲地出發(fā),前往乙地緝拿這伙犯罪分子,結(jié)果警車與販毒車同時到達(dá),將犯罪分子一網(wǎng)打盡.已知販毒車比警車早出發(fā)1小時15分,警車與販毒車的速度比為43,求販毒車和警車的速度.

【答案】警車96千米/小時,販毒車72千米/小時

【解析】

設(shè)警車的速度為4xkm/h,則販毒車的速度為3xkm/h,根據(jù)警車與販毒車之間的時間關(guān)系建立方程求出其解,即可得出結(jié)果.

解:設(shè)警車的速度為4xkm/h,則販毒車的速度為3xkm/h

根據(jù)題意得: ,

解得:x=24,

經(jīng)檢驗(yàn),x= 24 是原方程的根,

∴原方程的根為x=24

∴警車的速度為:4×24 = 96km/h),販毒車的速度為:3×24 =72km/h).

答:警車的速度為96 km/h,販毒車的速度為24km/h

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線)與軸交于點(diǎn),過點(diǎn)作直線軸,且與交于點(diǎn).

1)當(dāng)時,求的長;

2)若,,且軸,判斷四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y = x2 - 4x + 3

1)用配方法將y = x2 - 4x + 3化成y = a(x - h)2 + k的形式;

2)在平面直角坐標(biāo)系中畫出該函數(shù)的圖象;

3)當(dāng)0≤x≤3時,y的取值范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小巖打算購買氣球裝扮學(xué)校“畢業(yè)典禮”活動會場,氣球的種類有笑臉和愛心兩種,兩種氣球的價格不同,但同一種氣球的價格相同.由于會場布置需要,購買時以一束(4個氣球)為單位,已知第一、二束氣球的價格如圖所示,則第三束氣球的價格為______元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中有一點(diǎn).

1)若點(diǎn)軸的距離為2時,求點(diǎn)的坐標(biāo);

2)若點(diǎn)的坐標(biāo)是,當(dāng)軸時,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問題:

尺規(guī)作圖:作已知角的角平分線

已知:如圖,已知.

求作: 的角平分線.

小霞的作法如下:

(1)如圖,在平面內(nèi)任取一點(diǎn);

2以點(diǎn)為圓心, 為半徑作圓,交射線于點(diǎn),交射線于點(diǎn);

3連接,過點(diǎn)作射線垂直線段,交于點(diǎn);

4連接.

所以射線為所求.

老師說:“小霞的作法正確.”

請回答:小霞的作圖依據(jù)是___________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,點(diǎn)邊中點(diǎn),點(diǎn)邊中點(diǎn);點(diǎn) 邊三等分點(diǎn), , 邊三等分點(diǎn).小瑞分別用不同的方式連接矩形對邊上的點(diǎn),如圖2,圖3所示.那么,圖2中四邊形的面積與圖3中四邊形的面積相等嗎?

(1)小瑞的探究過程如下

在圖2中,小瑞發(fā)現(xiàn), ;

在圖3中,小瑞對四邊形面積的探究如下. 請你將小瑞的思路填寫完整:

設(shè),

,且相似比為,得到

,且相似比為,得到

又∵

, ,

,則(填寫“,”或“

(2)小瑞又按照圖4的方式連接矩形對邊上的點(diǎn).則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下表:

序號

1

2

3

圖形

我們把某格中字母和所得到的多項(xiàng)式稱為特征多項(xiàng)式,例如第1格的特征多項(xiàng)式.

回答下列問題:

1)第3格的特征多項(xiàng)式____________,

4格的特征多項(xiàng)式____________

格的特征多項(xiàng)式____________

2)若第1格的特征多項(xiàng)式的值為10,第2格的特征多項(xiàng)式的值為19,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角尺(在RtABC中,∠ACB=90°B=60°;在RtDEF中,∠EDF=90°,E=45°)如圖①擺放,點(diǎn)DAB的中點(diǎn),DEAC于點(diǎn)P,DF經(jīng)過點(diǎn)C.

1)求∠ADE的度數(shù);

2)如圖②,將DEF繞點(diǎn)D順時針方向旋轉(zhuǎn)角,此時等腰直角三角尺記為, AC于點(diǎn)M BC于點(diǎn)N,試判斷的值是否隨著的變化而變化?如果不變,請求出的值;反之,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案