【題目】隨著人們環(huán)保意識的不斷增強,我市家庭電動自行車的擁有量逐年增加.據(jù)統(tǒng)計,某小區(qū)2009年底擁有家庭電動自行車125輛,2011年底家庭電動自行車的擁有量達到180輛.
(1)若該小區(qū)2009年底到2012年底家庭電動自行車擁有量的年平均增長率相同,則該小區(qū)到2012年底電動自行車將達到多少輛?
(2)為了緩解停車矛盾,該小區(qū)決定投資3萬元再建若干個停車位,據(jù)測算,建造費用分別為室內(nèi)車位1000元/個,露天車位200元/個.考慮到實際因素,計劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過室內(nèi)車位的2.5倍,則該小區(qū)最多可建兩種車位各多少個?試寫出所有可能的方案.
【答案】(1)小區(qū)到2012年底家庭電動自行車將達到216輛;
(2)方案一:建室內(nèi)車位20個,露天車位50個;
方案二:室內(nèi)車位21個,露天車位45個.
【解析】
試題分析:(1)設(shè)年平均增長率是x,根據(jù)某小區(qū)2009年底擁有家庭電動自行車125輛,2011年底家庭電動自行車的擁有量達到180輛,可求出增長率,進而可求出到2012年底家庭電動車將達到多少輛.
(2)設(shè)建x個室內(nèi)車位,根據(jù)投資錢數(shù)可表示出露天車位,根據(jù)計劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過室內(nèi)車位的2.5倍,可列出不等式組求解,進而可求出方案情況.
解:(1)設(shè)家庭電動自行車擁有量的年平均增長率為x,
則125(1+x)2=180,
解得x1=0.2=20%,x2=﹣2.2(不合題意,舍去)
∴180(1+20%)=216(輛),
答:該小區(qū)到2012年底家庭電動自行車將達到216輛;
(2)設(shè)該小區(qū)可建室內(nèi)車位a個,露天車位b個,
則,
由①得b=150﹣5a,
代入②得20≤a≤,
∵a是正整數(shù),
∴a=20或21,
當(dāng)a=20時b=50,當(dāng)a=21時b=45.
∴方案一:建室內(nèi)車位20個,露天車位50個;
方案二:室內(nèi)車位21個,露天車位45個.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)圖象的頂點為,其圖象與軸的交點為、,對稱軸為直線,與軸負(fù)半軸交于點,且,下面五個結(jié)論:
①;②;③;④一元二次方程必有兩個不相等的實數(shù)根;⑤.
那么,其中正確的結(jié)論是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按下列要求作圖.
(1)如圖,陰影部分是由5個小正方形組成的一個直角圖形,請用二種不同的方法分別在下圖方格內(nèi)添涂黑二個小正方形,使陰影部分成為軸對稱圖形.(全等的陰影部分為同一種)
(2)在圖1的網(wǎng)格中找出所有能使AB的長度為5的格點B.
(3)在圖2中構(gòu)造一個腰長為5的等腰三角形,使它的三個頂點都在格點上,且三角形的面積為3.5.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設(shè)每件商品降價元。據(jù)此規(guī)律,請回答:
(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。
(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形紙片中,,,,將紙片沿過點的直線折疊,使點落在邊上的點處,折痕為.連接并展開紙片.
判斷四邊形的形狀,并說明理由.
取線段的中點,連接、,如果,試說明四邊形是等腰梯形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1,l2交于點A,直線l2與x軸、y軸分別交于點B(﹣3,0)、D(0,3),直線l1所對應(yīng)的函數(shù)關(guān)系式為y=﹣2x﹣2.
(1)求點C的坐標(biāo)及直線l2所對應(yīng)的函數(shù)關(guān)系式;
(2)求△ABC的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P是⊙O外一點,PO交圓O于點C,OC=CP=2,弦AB⊥OC,劣弧AB的度數(shù)為120°,連接PB.
(1)求BC的長;
(2)求證:PB是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,Rt△ABC 中,∠ACB=90 ,AC=6cm,BC=8cm,動點 P 從點 B 出發(fā),在 BA邊上以每秒 5cm 的速度向點 A 勻速運動,同時動點 Q 從點 C 出發(fā),在 CB 邊上以每秒 4cm 的 速度向點 B 勻速運動,運動時間為 t 秒(0<t<2),連接 PQ.
(1)若△BPQ 與△ABC 相似,求 t 的值;
(2)當(dāng) t 為何值時,四邊形 ACQP 的面積最小,最小值是多少?
(3)連接 AQ,CP,若 AQ⊥CP,求 t 的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于、兩點,交軸于點,頂點為,其對稱軸交軸于點.直線經(jīng)過、兩點,交拋物線的對稱軸于點,其中點的橫坐標(biāo)為.
(1)求拋物線的表達式;
(2)連接,求的周長;
(3)若是拋物線位于直線的下方且在其對稱軸左側(cè)上的一點,當(dāng)四邊形的面積最大時,求點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com