【題目】如圖,在正方形ABCD和正方形DEFG中,點(diǎn)G在CD上,DE=2,將正方形DEFG繞點(diǎn)D順時針旋轉(zhuǎn)60°,得到正方形DE′F′G′,此時點(diǎn)G′在AC上,連接CE′,則CE′+CG′=( 。
A. B. C. D.
【答案】A
【解析】試題解析:作G′I⊥CD于I,G′R⊥BC于R,E′H⊥BC交BC的延長線于H.連接RF′.則四邊形RCIG′是正方形.
∵∠DG′F′=∠IGR=90°,∴∠DG′I=∠RG′F′,在△G′ID和△G′RF中,∵G′D= G′F,∠D G′I=∠R G′F′,G′I= G′R,∴△G′ID≌△G′RF,∴∠G′ID=∠G′RF′=90°,∴點(diǎn)F′在線段BC上,在Rt△E′F′H中,∵E′F′=2,∠E′F′H=30°,∴E′H=E′F′=1,F′H=,易證△RG′F′≌△HF′E′,∴RF′=E′H,RG′RC=F′H,∴CH=RF′=E′H,∴CE′=,∵RG′=HF′=,∴CG′=RG′=,∴CE′+CG′=.
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面8m時,水面寬AB為12m.當(dāng)水面上升6m時達(dá)到警戒水位,此時拱橋內(nèi)的水面寬度是多少m?
下面給出了解決這個問題的兩種方法,請補(bǔ)充完整:
方法一:如圖1,以點(diǎn)A為原點(diǎn),AB所在直線為x軸,建立平面直角坐標(biāo)系xOy,
此時點(diǎn)B的坐標(biāo)為( , ),拋物線的頂點(diǎn)坐標(biāo)為( , ),
可求這條拋物線所表示的二次函數(shù)的解析式為 .
當(dāng)y=6時,求出此時自變量x的取值,即可解決這個問題.
方法二:如圖2,以拋物線頂點(diǎn)為原點(diǎn),對稱軸為y軸,建立平面直角坐標(biāo)系xOy,
這時這條拋物線所表示的二次函數(shù)的解析式為 .
當(dāng)y= 時,求出此時自變量x的取值為 ,即可解決這個問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為﹣3和1;④a﹣2b+c>0,其中正確的命題是( )
A. ①②③B. ①③C. ①④D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C = 90°,∠BAC 的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心、OA長為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC,AB于點(diǎn)E,F.
(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若OA = 2,∠B = 30°,求涂色部分的面積(結(jié)果保留和根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,解答問題:
例:用圖象法解一元二次不等式:.
解:設(shè),則是的二次函數(shù).
拋物線開口向上.
又當(dāng)時,,解得.
由此得拋物線的大致圖象如圖所示.
觀察函數(shù)圖象可知:當(dāng)或時,.的解集是:或.
(1)觀察圖象,直接寫出一元二次不等式:的解集是 ;
(2)仿照上例,用圖象法解一元二次不等式:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在AC⊥BC,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),且AD=4,過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求CE的長;
(2)當(dāng)D在AB中點(diǎn)時,四邊形BECD是什么特殊四邊形?說明你的理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x經(jīng)過點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到△CBD,若點(diǎn)B的坐標(biāo)為(2,0),則點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.
(1)請你確定燈泡所在的位置,并畫出表示小亮在燈光下形成的影子線段.
(2)如果燈桿高12m,小亮的身高1.6m,小亮與燈桿的距離13m,請求出小亮影子的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射線QN與等邊△ABC的兩邊AB,BC分別交于點(diǎn)M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動點(diǎn)P從點(diǎn)Q出發(fā),沿射線QN以每秒1cm的速度向右移動,經(jīng)過t秒,以點(diǎn)P為圓心,cm為半徑的圓與△ABC的邊相切(切點(diǎn)在邊上),請寫出t可取的一切值 (單位:秒)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com