【題目】如圖,已知∠ABC=∠DCB,添加以下條件,不能判定△ABC≌△DCB的是( 。

A.A=∠DB.ACB=∠DBCC.ACDBD.ABDC

【答案】C

【解析】

根據(jù)全等三角形的判定方法SAS,ASAAAS,SSS,逐一判斷選項(xiàng),即可得到答案.

A、∠A=∠D,∠ABC=∠DCB,BCBC,根據(jù)AAS,即能推出△ABC≌△DCB,故本選項(xiàng)不符合題意;

B、∠ABC=∠DCB,BCCB,∠ACB=∠DBC,根據(jù)ASA,即能推出△ABC≌△DCB,故本選項(xiàng)不符合題意;

C、∠ABC=∠DCB,ACBD,BCBC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本選項(xiàng)符合題意;

DABDC,∠ABC=∠DCB,BCBC,根據(jù)SAS,即能推出△ABC≌△DCB,故本選項(xiàng)不符合題意,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC90C0,﹣2),AC3AD,點(diǎn)A在反比例函數(shù)y上,且y軸平分∠ACB,若則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,以點(diǎn)為圓心,適當(dāng)長(zhǎng)度為半徑作弧,分別交邊于點(diǎn),分別以為圓心,大于的長(zhǎng)為半徑作弧,兩弧在內(nèi)交于點(diǎn),作射線.若上一點(diǎn),過(guò)點(diǎn)的平行線交于點(diǎn),且,則直線之間的距離是(

A.B.C.3D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線與拋物線相交于,兩點(diǎn),拋物線軸于點(diǎn),交軸正半軸于點(diǎn),拋物線的頂點(diǎn)為

1)求拋物線的解析式;

2)設(shè)點(diǎn)為直線下方的拋物線上一動(dòng)點(diǎn),當(dāng)的面積最大時(shí),求的面積及點(diǎn)的坐標(biāo);

3)若點(diǎn)軸上一動(dòng)點(diǎn),點(diǎn)在拋物線上且位于其對(duì)稱軸右側(cè),當(dāng)相似時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C = 90°,點(diǎn)O是斜邊AB上一定點(diǎn),到點(diǎn)O的距離等于OB的所有點(diǎn)組成圖形W,圖形WAB,BC分別交于點(diǎn)D,E,連接AE,DE,∠AED=B

1)判斷圖形WAE所在直線的公共點(diǎn)個(gè)數(shù),并證明.

2)若,求OB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為支持國(guó)家南水北調(diào)工程建設(shè),小王家由原來(lái)養(yǎng)殖戶變?yōu)榉N植戶,經(jīng)市場(chǎng)調(diào)查得知,當(dāng)種植櫻桃的面積x不超過(guò)15畝時(shí),每畝可獲得利潤(rùn)y1900元;超過(guò)15畝時(shí),每畝獲得利潤(rùn)y(元)與種植面積x(畝)之間的函數(shù)關(guān)系如下表(為所學(xué)過(guò)的一次函數(shù),反比例函數(shù)或二次函數(shù)中的一種)

x(畝)

20

25

30

35

y(元)

1800

1700

1600

1500

1)請(qǐng)求出種植櫻桃的面積超過(guò)15畝時(shí)每畝獲得利潤(rùn)yx的函數(shù)關(guān)系式;

2)如果小王家計(jì)劃承包荒山種植櫻桃,受條件限制種植櫻桃面積x不超過(guò)50畝,設(shè)小王家種植x畝櫻桃所獲得的總利潤(rùn)為W元,求小王家承包多少畝荒山獲得的總利潤(rùn)最大,并求總利潤(rùn)W(元)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AB=AC,BDACD,若cosBAD=BD=,則CD的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,半徑直徑相切于點(diǎn)連接于點(diǎn)于點(diǎn),連接并延長(zhǎng)交于點(diǎn),連接

求證: ;

①求證:四邊形是平行四邊形;

②連接,當(dāng)的半徑為時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,是真命題的是( 。

A.將函數(shù)yx+1向右平移2個(gè)單位后所得函數(shù)的解析式為yx

B.若一個(gè)數(shù)的平方根等于其本身,則這個(gè)數(shù)是01

C.對(duì)函數(shù)y,其函數(shù)值y隨自變量x的增大而增大

D.直線y3x+1與直線y=﹣3x+2一定互相平行

查看答案和解析>>

同步練習(xí)冊(cè)答案