【題目】如圖,已知等腰△ABC,ABAC8,∠BAC120°,請用圓規(guī)和直尺作出△ABC的外接圓.并計算此外接圓的半徑.

【答案】見解析

【解析】

作出AB,AC的垂直平分線,兩垂直平分線的交點就是圓心,以交點為圓心,交點到三角形的頂點為半徑畫圓可得ABC的外接圓;再根據(jù)垂徑定理得出∠BAO=60°,得出ABO為等邊三角形,從而求得外接圓的半徑.

作出ABAC的垂直平分線,兩垂直平分線的交點就是圓心,以交點為圓心,交點到三角形的頂點為半徑畫圓,畫圖如下:

AB=AC=8,

∴弧AB=AC

∵∠BAC=120°AOBC,
∴∠BAO=60°,

OA=OB
∴△ABO為等邊三角形,

OA=OB =AB=8
∴△ABC的外接圓的半徑為8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①頻率是反映事件發(fā)生的頻繁程度,概率反映事件發(fā)生的可能性大小;②做n次隨機(jī)試驗,事件A發(fā)生m次,則事件A發(fā)生的概率一定等于;③頻率是不能脫離具體的n次試驗的實驗值,而概率是具有確定性的不依賴于試驗次數(shù)的理論值;④頻率是概率的近似值,概率是頻率的穩(wěn)定值.其中正確的是______(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,甲、乙兩人在玩轉(zhuǎn)盤游戲時,分別把轉(zhuǎn)盤A,B分成3等份和1等份,并在每一份內(nèi)標(biāo)上數(shù)字.游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針?biāo)趨^(qū)域的數(shù)字之積為奇數(shù)時,甲獲勝;當(dāng)數(shù)字之積為偶數(shù)時,乙獲勝.如果指針恰好在分割線上時,則需重新轉(zhuǎn)動轉(zhuǎn)盤.

1)利用畫樹狀圖或列表的方法,求甲獲勝的概率.

2)這個游戲規(guī)則對甲、乙雙方公平嗎?若公平,請說明理由;若不公平,請你在轉(zhuǎn)盤A上只修改一個數(shù)字使游戲公平(不需要說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA,PB切O于A、B兩點,CD切O于點E,交PA,PB于C,DO的半徑為r,PCD的周長等于3r,則tanAPB的值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進(jìn)價格為3/個的某品牌粽子,根據(jù)市場預(yù)測,該品牌粽子每個售價4元時,每天能出售500個,并且售價每上漲0.1元,其銷售量將減少10個,為了維護(hù)消費(fèi)者利益,物價部門規(guī)定,該品牌粽子售價不能超過進(jìn)價的200%,請你利用所學(xué)知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為800元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A是以BC為直徑的⊙O上一點,ADBC于點D,過點B作⊙O的切線,與CA的延長線相交于點E,GAD的中點,連結(jié)CG并延長與BE相交于點F,延長AFCB的延長線相交于點P

1)求證:BF=EF;

2)求證:PA是⊙O的切線;

3)若FG=BF,且⊙O的半徑長為3,求BDFG的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與雙曲線交于點A,過點AO的平行線交雙曲線于點B,連接AB并延長與y軸交于點,則k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是坐標(biāo)原點,點A的坐標(biāo)是(2,3),則C點坐標(biāo)是_____

查看答案和解析>>

同步練習(xí)冊答案