【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于第一象限內(nèi)的P(,8),Q(4,m)兩點,與x軸交于A點.
(1)分別求出這兩個函數(shù)的表達式;
(2)寫出點P關(guān)于原點的對稱點P'的坐標;
(3)求∠P'AO的正弦值.
【答案】(1) 反比例函數(shù)的表達式為y=,一次函數(shù)的表達式為y=﹣2x+9;(2) (-,﹣8);(3) .
【解析】
試題分析:(1)根據(jù)P(,8),可得反比例函數(shù)解析式,根據(jù)P(,8),Q(4,1)兩點可得一次函數(shù)解析式;
(2)根據(jù)中心對稱的性質(zhì),可得點P關(guān)于原點的對稱點P'的坐標;
(3)過點P′作P′D⊥x軸,垂足為D,構(gòu)造直角三角形,依據(jù)P'D以及AP'的長,即可得到∠P'AO的正弦值.
試題解析:(1)∵點P在反比例函數(shù)的圖象上,
∴把點P(,8)代入y=可得:k2=4,
∴反比例函數(shù)的表達式為y=,
∴Q (4,1).
把P(,8),Q (4,1)分別代入y=k1x+b中,
得,
解得,
∴一次函數(shù)的表達式為y=﹣2x+9;
(2)點P關(guān)于原點的對稱點P'的坐標為(-,﹣8);
(3)過點P′作P′D⊥x軸,垂足為D.
∵P′(-,﹣8),
∴OD=,P′D=8,
∵點A在y=﹣2x+9的圖象上,
∴點A(,0),即OA=,
∴DA=5,
∴P′A=,
∴sin∠P′AD=,
∴sin∠P′AO= .
科目:初中數(shù)學 來源: 題型:
【題目】荔枝是深圳的特色水果,小明的媽媽先購買了2千克桂味和3千克糯米糍,共花費90元;后又購買了1千克桂味和2千克糯米糍,共花費55元.(每次兩種荔枝的售價都不變)
(1)求桂味和糯米糍的售價分別是每千克多少元;
(2)如果還需購買兩種荔枝共12千克,要求糯米糍的數(shù)量不少于桂味數(shù)量的2倍,請設計一種購買方案,使所需總費用最低.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com