【題目】如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC的斜邊AB的兩個端點,交直角邊AC于點E.B、E是半圓弧的三等分點,弧BE的長為 ,則圖中陰影部分的面積為 .
【答案】
【解析】解:連接BD,BE,BO,EO,
∵B,E是半圓弧的三等分點,
∴∠EOA=∠EOB=∠BOD=60°,
∴∠BAC=∠EBA=30°,
∴BE∥AD,
∵ 的長為 ,
∴ = ,
解得:R=2,
∴AB=ADcos30°=2 ,
∴BC= AB= ,
∴AC= = =3,
∴S△ABC= ×BC×AC= × ×3= ,
∵△BOE和△ABE同底等高,
∴△BOE和△ABE面積相等,
∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE= ﹣ = ﹣ .
故答案為: .
首先根據(jù)圓周角定理得出扇形半徑以及圓周角度數(shù),進(jìn)而利用銳角三角函數(shù)關(guān)系得出BC,AC的長,利用S△ABC﹣S扇形BOE=圖中陰影部分的面積求出即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A’B’C.若=40°,=110°,則∠的度數(shù)為( )
A. 30° B. 50° C. 80° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年《政府工作報告》中提出了十大新詞匯,為了解同學(xué)們對新詞匯的關(guān)注度,某數(shù)學(xué)興趣小組選取其中的A:“互聯(lián)網(wǎng)+政務(wù)服務(wù)”,B:“工匠精神”,C:“光網(wǎng)城市”,D:“大眾旅游時代”四個熱詞在全校學(xué)生中進(jìn)行了抽樣調(diào)查,要求被調(diào)查的每位同學(xué)只能從中選擇一個我最關(guān)注的熱詞.根據(jù)調(diào)查結(jié)果,該小組繪制了如下的兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了多少名同學(xué)?
(2)條形統(tǒng)計圖中,m= , n=;
(3)扇形統(tǒng)計圖中,熱詞B所在扇形的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】典典同學(xué)學(xué)完統(tǒng)計知識后,隨機(jī)調(diào)查了她家所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形和條形統(tǒng)計圖:
請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:
(1)扇形統(tǒng)計圖中a= ,b= ;并補(bǔ)全條形統(tǒng)計圖;
(2)若該轄區(qū)共有居民3500人,請估計年齡在0~14歲的居民的人數(shù).
(3)一天,典典知道了轄區(qū)內(nèi)60歲以上的部分老人參加了市級門球比賽,比賽的老人們分成甲、乙兩組,典典很想知道甲乙兩組的比賽結(jié)果,王大爺告訴說,甲組與乙組的得分和為110,甲組得分不低于乙組得分的1.5倍,甲組得分最少為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點B落在邊AD上,折痕的一端E點在邊BC上,BE=10.則折痕的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重陽節(jié)期間,某單位組織本單位退休職工前去距離商丘480千米的信陽雞公山登高旅游,由于人數(shù)較多,共租用甲、乙兩輛長途汽車沿同一路線趕赴景點.圖中的折線、線段分別表示甲、乙兩車所走的路程y甲(千米),y乙(千米)與時間x(小時)之間的函數(shù)關(guān)系對應(yīng)的圖象.請根據(jù)圖象所提供的信息,解決下列問題:
(1)由于汽車發(fā)生故障,甲車在途中停留了小時;
(2)甲車排除故障后,立即提速趕往景點.請問甲車在排除故障時,距出發(fā)點的路程是多少千米?
(3)為了保證及時聯(lián)絡(luò),甲、乙車在第一次相遇時約定此后兩車之間的路程不超過35千米,請通過計算說明,按圖象所表示的走法是否符合約定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)12+(-13)+8+(-7);
(2)×÷;
(3)-36×;
(4)-14-÷+[-2+(-2)2]-|2-4|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形ABCD中,對角線AC與BD相交于點O,AB=13,BD=24,在菱形ABCD的外部以AB為邊作等邊三角形 ABE.點F是對角線BD上一動點(點F不與點B重合),將線段AF繞點A順時針方向旋轉(zhuǎn)60°得到線段AM,連接FM.
(1)求AO的長;
(2)如圖2,當(dāng)點F在線段BO上,且點M,F(xiàn),C三點在同一條直線上時,求證:AC= AM;
(3)連接EM,若△AEM的面積為40,請直接寫出△AFM的周長.
溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便作答
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com