【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CDABD,且∠COD=60°,E為弧BC上一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),過(guò)E分別作于EFABF,EGOCG.現(xiàn)給出以下四個(gè)命題:

①∠GEF=60°;CD=GF;③△GEF一定為等腰三角形;④E在弧BC上運(yùn)動(dòng)時(shí),存在某個(gè)時(shí)刻使得GEF為等邊三角形.

其中正確的命題是_____.(寫(xiě)出所有正確命題的序號(hào))

【答案】①②④

【解析】

①根據(jù)四邊形的內(nèi)角和定理即可證到∠GEF=60°②連接OE,取OE的中點(diǎn)O′,連接O′F,GO′,易證點(diǎn)E、G、O、F四點(diǎn)共圓,延長(zhǎng)GO′ O′R,連接RF.利用三角函數(shù)可證到CD=GF;③運(yùn)用反證法就可得到GEF不一定為等腰三角形;④由于∠GEF=60°,要使得GEF為等邊三角形,只需要EG=EF即可,在 O′中只需∠COE=BOE即可,在 O中,只需點(diǎn)E的中點(diǎn)即可.

①∵EFABEGOC,

∴∠EGO=EFO=90°.

∴∠GEF+GOF=180°.

∵∠GOF=180COD=180°60°=120°

∴∠GEF=180°120°=60°.

故①正確.

②連接OE,OE的中點(diǎn)O′,連接OF,GO,如圖所示.

∵∠EGO=EFO=90°,點(diǎn)OOE的中點(diǎn),

OG=OF=OE.

∴點(diǎn)E.G、OF在以點(diǎn)O為圓心,OO為半徑的圓上.

延長(zhǎng)GOOR,連接RF.

則有∠GRF=GEF=60°.

GRO的直徑,∴∠GFR=90°.

GF=GRsinGRF=OEsin60°=OE=OC=CD.

故②正確.

③假設(shè)EGF一定是等腰三角形,

∵∠GEF=60°,EGF一定是等邊三角形.

EGEF一定相等.

E為弧BC上一動(dòng)點(diǎn)(不與點(diǎn)B.C重合),顯然EGEF不一定相等.

∴假設(shè)不成立.

故③錯(cuò)誤.

④當(dāng)點(diǎn)E運(yùn)動(dòng)到的中點(diǎn)時(shí),

則有∠COE=BOE.

EG=EF.

∵∠GEF=60°,

EGF是等邊三角形.

故④正確.

故答案為:①②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“滴滴出行”改變了傳統(tǒng)打車(chē)方式,最大化節(jié)省了司機(jī)與乘客雙方的資源與時(shí)間.該打車(chē)方式的總費(fèi)用由里程費(fèi)和耗時(shí)費(fèi)組成,其中里程費(fèi)按公里計(jì)算,耗時(shí)費(fèi)按分鐘計(jì)算.甲、乙兩乘客用該打車(chē)方式出行,按上述計(jì)價(jià)規(guī)則,其打車(chē)總費(fèi)用、行駛里程數(shù)與平均車(chē)速等信息如下表:

平均速度(公里/時(shí))

里程數(shù)(公里)

車(chē)費(fèi)(元)

甲乘客

乙乘客

1)求的值;

2)如果你采用“滴滴出行”的打車(chē)方式,保持平均車(chē)速公里時(shí),行駛了公里,那么你是否能夠計(jì)算出打車(chē)的總費(fèi)用?如果能,總費(fèi)用為多少元?如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形 ABCD 中,ADBC,DCBC,將四邊形沿對(duì)角線 BD 折疊,點(diǎn) A 恰好落在 DC 邊上的 點(diǎn) A'處,若∠A'BC=20°,則∠A'BD 的度數(shù)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,平分

1)若為線段上的一個(gè)點(diǎn),過(guò)點(diǎn)交線段的延長(zhǎng)線于點(diǎn)

①若,,則_______;

②猜想、之間的數(shù)量關(guān)系,并給出證明.

2)若在線段的延長(zhǎng)線上,過(guò)點(diǎn)交直線于點(diǎn),請(qǐng)你直接寫(xiě)出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車(chē)分別從相距420kmAB兩地相向而行,乙車(chē)比甲車(chē)先出發(fā)1小時(shí),兩車(chē)分別以各自的速度勻速行駛,途經(jīng)C地(A、B、C三地在同一條直線上).甲車(chē)到達(dá)C地后因有事立即按原路原速返回A地,乙車(chē)從B地直達(dá)A地,甲、乙兩車(chē)距各自出發(fā)地的路程y(千米)與甲車(chē)行駛所用的時(shí)間x(小時(shí))的關(guān)系如圖所示,結(jié)合圖象信息回答下列問(wèn)題:

1)甲車(chē)的速度是   千米/時(shí),乙車(chē)的速度是   千米/時(shí);

2)求甲車(chē)距它出發(fā)地的路程y(千米)與它行駛所用的時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式;

3)甲車(chē)出發(fā)多長(zhǎng)時(shí)間后兩車(chē)相距90千米?請(qǐng)你直接寫(xiě)出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若將四根木條釘成的矩形木框ABCD變形為平行四邊形A′BCD′,并使其面積為矩形ABCD面積的一半,若A′D′CD交于點(diǎn)E,且AB2,則ECD′的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+5與雙曲線x0)相交于A,B兩點(diǎn),與x軸相交于C點(diǎn),△BOC的面積是.若將直線y=﹣x+5向下平移1個(gè)單位,則所得直線與雙曲線x0)的交點(diǎn)有( )

A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 0個(gè),或1個(gè),或2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)A(3,1),且過(guò)點(diǎn)B(0,﹣2).

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)如果點(diǎn)P是x軸上一點(diǎn),且△ABP的面積是3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有點(diǎn)A(﹣4,0)、B(0,3)、Pa,﹣a)三點(diǎn),線段CDAB關(guān)于點(diǎn)P中心對(duì)稱(chēng),其中A、B的對(duì)應(yīng)點(diǎn)分別為CD

(1)當(dāng)a=﹣4時(shí)

①在圖中畫(huà)出線段CD,保留作圖痕跡

②線段CD向下平移   個(gè)單位時(shí),四邊形ABCD為菱形;

(2)當(dāng)a   時(shí),四邊形ABCD為正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案