【題目】如圖,直線y=﹣x+b與雙曲線 (x>0)交于A、B兩點,與x軸、y軸分別交于E、F兩點,連接OA、OB,若S△AOB=S△OBF+S△OAE , 則b= .
【答案】
【解析】解:令y=0,則﹣x+b=0,
解得x=b,
令x=0,則y=b,
所以,點E(b,0)、F(0,b),
所以,OE=OF,
過點O作OM⊥AB于點M,
則ME=MF,
設(shè)點A(x1 , y1)、B(x2 , y2),
聯(lián)立 ,
消掉y得,x2﹣bx+1=0,
根據(jù)根與系數(shù)的關(guān)系,x1x2=1,
所以y1y2=1,
所以y1=x2 , y2=x1 ,
所以O(shè)A=OB,
所以AM=BM(等腰三角形三線合一),
∵S△AOB=S△OBF+S△OAE ,
∴FB=BM=AM=AE,
所以點A( b, b),∵點A在雙曲線y= 上,∴ b× b=1,解得b= . 所以答案是: .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC=4,M為AB的中點.D是射線BC上一個動點,連接AD,將線段AD繞點A逆時針旋轉(zhuǎn)90°得到線段AE,連接ED,N為ED的中點,連接AN,MN.
(1)如圖1,當(dāng)BD=2時,AN等于多少?,NM與AB的位置關(guān)系是?
(2)當(dāng)4<BD<8時,
①依題意補(bǔ)全圖2;
②判斷(1)中NM與AB的位置關(guān)系是否發(fā)生變化,并證明你的結(jié)論;
(3)連接ME,在點D運動的過程中,當(dāng)BD的長為何值時,ME的長最?最小值是多少?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,點O為直線AB上一點,過點O作射線OC,使∠AOC=120°,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖①中的三角板OMN擺放成如圖②所示的位置,使一邊OM在∠BOC的內(nèi)部,當(dāng)OM平分∠BOC時,∠BON= ;(直接寫出結(jié)果)
(2)在(1)的條件下,作線段NO的延長線OP(如圖③所示),試說明射線OP是∠AOC的平分線;
(3)將圖①中的三角板OMN擺放成如圖④所示的位置,請?zhí)骄俊?/span>NOC與∠AOM之間的數(shù)量關(guān)系.(直接寫出結(jié)果,不須說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個等腰直角三角形按圖示方式依次翻折,若DE=a,則①DC′平分∠BDE;②BC長為+1)a;③△BC′D是等腰三角形;④△CED的周長等于BC的長.則上述命題中正確的序號是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為打造書香校園,計劃購進(jìn)甲、乙兩種規(guī)格的書柜放置新購進(jìn)的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.
(1)甲、乙兩種書柜每個的價格分別是多少元?
(2)若該校計劃購進(jìn)這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請設(shè)計幾種購買方案供這個學(xué)校選擇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某公園里一處矩形風(fēng)景欣賞區(qū)ABCD,長AB=50米,寬BC=25米,為方便游人觀賞,公園特意修建了如圖所示的小路(圖中非陰影部分),小路的寬均為1米,那小明沿著小路的中間,從出口A到出口B所走的路線(圖中虛線)長為( )
A.100米 B.99米 C.98米 D.74米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx+c經(jīng)過點A(﹣3,0)、B(0,3)、C(1,0)三點.
(1)求拋物線的解析式和頂點D的坐標(biāo);
(2)如圖1,將拋物線的對稱軸繞拋物線的頂點D順時針旋轉(zhuǎn)60°,與直線y=﹣x交于點N.在直線DN上是否存在點M,使∠MON=75°.若存在,求出點M的坐標(biāo);若不存在,請說明理由;
(3)點P、Q分別是拋物線y=ax2+bx+c和直線y=﹣x上的點,當(dāng)四邊形OBPQ是直角梯形時,求出點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△A1B1C1是邊長為1的等邊三角形,A2為等邊△A1B1C1的中心,連接A2B1并延長到點B2 , 使A2B1=B1B2 , 以A2B2為邊作等邊△A2B2C2 , A3為等邊
△A2B2C2的中心,連接A3B2并延長到點B3 , 使A3B2=B2B3 , 以A3B3為邊作等邊△A3B3C3 , 依次作下去得到等邊△AnBnCn , 則等邊△A5B5C5的邊長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com