【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)拋物線的解析式為y=﹣x2+x+8;(2)①S=﹣m2+3m;②滿足條件的點(diǎn)F共有四個(gè),坐標(biāo)分別為F1(,8),F2(,4),F3(,6+),F4(,6﹣).
【解析】
(1)運(yùn)用待定系數(shù)法求解;(2)①根據(jù)三角函數(shù)值性質(zhì)得;②求函數(shù)的最值,根據(jù)拋物線性質(zhì)求出D,Q的坐標(biāo),根據(jù)直角的位置有3種可能,展開分析,解直角三角形.
(1)將A、C兩點(diǎn)坐標(biāo)代入拋物線,得
,
解得:,
∴拋物線的解析式為y=
(2)①∵OA=8,OC=6,
∴AC=
過點(diǎn)Q作QE⊥BC與E點(diǎn),則sin∠ACB=
②
∴當(dāng)m=5時(shí),S取最大值;
在拋物線對(duì)稱軸l上存在點(diǎn)F,使△FDQ為直角三角形,
∵拋物線的解析式為y=的對(duì)稱軸為x=,
D的坐標(biāo)為(3,8),Q(3,4),
當(dāng)∠FDQ=90°時(shí),F1(,8),
當(dāng)∠FQD=90°時(shí),則F2(,4),
當(dāng)∠DFQ=90°時(shí),設(shè)F(,n),
則FD2+FQ2=DQ2,
即 +(8﹣n)2+ +(n﹣4)2=16,
解得:n=6±,
∴F3(,6+ ),F4(,6﹣),
滿足條件的點(diǎn)F共有四個(gè),坐標(biāo)分別為
F1(,8),F2(,4),F3(,6+ ),F4(,6﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,函數(shù)y1=kx+b的圖象與函數(shù)(x<0)的圖象交于A(a﹣2,3)、B(﹣3,a)兩點(diǎn).
(1)求函數(shù)y1、y2的表達(dá)式;
(2)過A作AM⊥y軸,過B作BN⊥x軸,試問在線段AB上是否存在點(diǎn)P,使S△PAM=3S△PBN?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加班長(zhǎng)競(jìng)選,需進(jìn)行演講答辯與民主測(cè)評(píng),民主測(cè)評(píng)時(shí)一人一票,按“優(yōu)秀、良好、一般”三選一投票.如圖是7位評(píng)委對(duì)小明“演講答辯”的評(píng)分統(tǒng)計(jì)圖及全班50位同學(xué)民主測(cè)評(píng)票數(shù)統(tǒng)計(jì)圖.
(1)求評(píng)委給小明演講答辯分?jǐn)?shù)的眾數(shù),以及民主測(cè)評(píng)為“良好”票數(shù)的扇形圓心角度數(shù);
(2)求小明的綜合得分是多少?
(3)在競(jìng)選中,小亮的民主測(cè)評(píng)得分為82分,如果他的綜合得分不小于小明的綜合得分,他的演講答辯得分至少要多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在爭(zhēng)創(chuàng)“全國(guó)文明城市”活動(dòng)中,組織全體學(xué)生參加了“創(chuàng)文”知識(shí)競(jìng)賽,為了解各年級(jí)成績(jī)情況,學(xué)校這樣做的:
(收集數(shù)據(jù))從七、八、九三個(gè)年級(jí)的競(jìng)賽成績(jī)中各隨機(jī)抽取了10名學(xué)生成績(jī)?nèi)缦卤恚?/span>
七年級(jí) | 60 | 70 | 60 | 100 | 80 | 70 | 80 | 60 | 40 | 90 |
八年級(jí) | 80 | 80 | 100 | 40 | 70 | 60 | 80 | 90 | 50 | 80 |
九年級(jí) | 70 | 50 | 60 | 90 | 100 | 80 | 80 | 90 | 70 | 70 |
(整理、描述數(shù)據(jù))(說明:80≤x≤100為優(yōu)秀,60≤x<80為合格,40≤x<60為一般)
年級(jí) | 40≤x<60 | 60≤x<80 | 80≤x≤100 |
七年級(jí) | 1 | 5 | 4 |
八年級(jí) | 2 | 2 | 6 |
九年級(jí) | 1 | 4 | 5 |
年級(jí) | 平均數(shù) | 眾數(shù) | 中位數(shù) |
七年級(jí) | a | 60 | 70 |
八年級(jí) | 73 | b | 80 |
九年級(jí) | 76 | 70 | c |
(分析數(shù)據(jù))三組樣本數(shù)據(jù)的平均分、眾數(shù)、中位數(shù)如上表所示,其中a= ,b= ,c= .
(得出結(jié)論)請(qǐng)你根據(jù)以上信息,推斷你認(rèn)為成績(jī)好的年級(jí),并說明理由(至少?gòu)膬蓚(gè)角度說明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=3cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以cm/s的速度沿AB方向運(yùn)動(dòng)到點(diǎn)B.動(dòng)點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度沿折線ACCB方向運(yùn)動(dòng)到點(diǎn)B.設(shè)△APQ的面積為y(cm2).運(yùn)動(dòng)時(shí)間為x(s),則下列圖象能反映y與x之間關(guān)系的是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A1(1,)在直線y=kx上,過點(diǎn)A1作A1B1∥y軸交直線y=x于點(diǎn)B1,以A1B1為邊在A1B1的右側(cè)作正方形A1B1C1D1,直線C1D1分別交直線y=kx和y=x于A2,B2兩點(diǎn),以A2B2為邊在A2B2的右側(cè)作等正方形A2B2C2D2…,直線C2D2分別交直線y=kx和y=x于A3,B3兩點(diǎn),以A3B3為邊在A3B3的右側(cè)作正方形A3B3C3D3,…,按此規(guī)律進(jìn)行下去,則正方形AnBnCnDn的面積為____________.(用含正整數(shù)n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c的頂點(diǎn)為C,對(duì)稱軸為直線x=1,且經(jīng)過點(diǎn)A(3,-1),與y軸交于點(diǎn)B.
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,并說明理由;
(3)經(jīng)過點(diǎn)A的直線交拋物線于點(diǎn)P,交x軸于點(diǎn)Q,若S△OPA=2S△OQA,試求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了貫徹落實(shí)《關(guān)于開展全市義務(wù)教育學(xué)生體質(zhì)抽測(cè)工作的通知》精神,推進(jìn)青少年茁壯成長(zhǎng)工程,我市決定繼續(xù)開展市直初中生體質(zhì)抽測(cè)工作。我校初三某班被抽中,已知各人選測(cè)項(xiàng)目為下列選項(xiàng)中的任意一項(xiàng):引體向上(男生)、仰臥起坐(女生)、立定跳遠(yuǎn)(男、女生),坐位體前屈(男、女生)。
(1)男生小磊抽測(cè)引體向上的概率是 ;
(2)用樹狀圖或列表法求男生小磊與女生小銘恰好都抽測(cè)坐位體前屈的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),∠BAD=∠BAC=60°,于是;
遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD.
(1)求證:△ADB≌△AEC;
(2)若AD=2,BD=3,請(qǐng)計(jì)算線段CD的長(zhǎng);
拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連接AE并延長(zhǎng)交BM于點(diǎn)F,連接CE,CF.
(3)證明:△CEF是等邊三角形;
(4)若AE=4,CE=1,求BF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com