【題目】如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度米,頂點距水面米(即米),小孔頂點距水面米(即米).當(dāng)水位上漲剛好淹沒小孔時,借助圖中的直角坐標(biāo)系,則此時大孔的水面寬度長為(

A. B. C. D.

【答案】D

【解析】

根據(jù)題意,可以得到AB、M的坐標(biāo),設(shè)出函數(shù)關(guān)系式,待定系數(shù)求解函數(shù)式.根據(jù)NC的長度,得出函數(shù)的y坐標(biāo),代入解析式,即可得出E、F的坐標(biāo),進(jìn)而得出答案.

由題意得,M點坐標(biāo)為(0,6),A點坐標(biāo)為(10,0),B點坐標(biāo)為(10,0),

設(shè)中間大拋物線的函數(shù)式為

代入三點的坐標(biāo)得到

解得

∴函數(shù)式為

NC=4.5米,

∴令y=4.5米,

代入解析式得

∴可得EF=5(5)=10.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰Rt△ABC中,AB=AC,D為斜邊BC的中點,EF分別為AB、AC邊上的點,且DE⊥DF,若BE=8cm,CF=6cm

1)判斷△DEF的形狀,并說明理由

2)求△DEF的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,∠BAC=120°,點 D BC 上一點,BD 的垂直平分線交 AB 于點E,將△ACD 沿 AD 折疊,點 C 恰好與點 E 重合,則∠B 等于_______°;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級6個班的180名學(xué)生即將參加北京市中學(xué)生開放性科學(xué)實踐活動送課到校課程的學(xué)習(xí).學(xué)習(xí)內(nèi)容包括以下7個領(lǐng)域:A.自然與環(huán)境,B.健康與安全,C.結(jié)構(gòu)與機(jī)械,D.電子與控制,E.?dāng)?shù)據(jù)與信息,F(xiàn).能源與材料,G.人文與歷史.為了解學(xué)生喜歡的課程領(lǐng)域,學(xué)生會開展了一次調(diào)查研究,請將下面的過程補全.

收集數(shù)據(jù)學(xué)生會計劃調(diào)查30名學(xué)生喜歡的課程領(lǐng)域作為樣本,下面抽樣調(diào)查的對象選擇合理的是  ;(填序號)

①選擇七年級1班、2班各15名學(xué)生作為調(diào)查對象

②選擇機(jī)器人社團(tuán)的30名學(xué)生作為調(diào)查對象

③選擇各班學(xué)號為6的倍數(shù)的30名學(xué)生作為調(diào)查對象

調(diào)查對象確定后,調(diào)查小組獲得了30名學(xué)生喜歡的課程領(lǐng)域如下:

A,C,D,D,G,G,F(xiàn),E,B,G,

C,C,G,D,B,A,G,F(xiàn),F(xiàn),A,

G,B,F(xiàn),G,E,G,A,B,G,G

整理、描述數(shù)據(jù)整理、描述樣本數(shù)據(jù),繪制統(tǒng)計圖表如下,請補全統(tǒng)計表和統(tǒng)計圖.

某校七年級學(xué)生喜歡的課程領(lǐng)域統(tǒng)計表

課程領(lǐng)域

人數(shù)

A

4

B

4

C

3

D

3

E

2

F

 4 

G

 10 

合計

30

分析數(shù)據(jù)、推斷結(jié)論請你根據(jù)上述調(diào)查結(jié)果向?qū)W校推薦本次送課到校的課程領(lǐng)域,你的推薦是  (填A(yù)﹣G的字母代號),估計全年級大約有  名學(xué)生喜歡這個課程領(lǐng)域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,兩組對邊分別平行的四邊形叫做平行四邊形。平行四邊形的內(nèi)角和、外角和都等于360°,根據(jù)三角形的學(xué)習(xí)經(jīng)驗,請你再寫出平行四邊形的兩條性質(zhì);并證明其中一條性質(zhì)

1______________________________________________

2________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,BAC=90°,AC=2AB,點DAC的中點.將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個端點分別與AD重合,連接BEEC

試猜想線段BEEC的數(shù)量及位置關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象過點且與直線相交于、兩點,點軸上,點軸上.

求二次函數(shù)的解析式.

如果是線段上的動點,為坐標(biāo)原點,試求的面積之間的函數(shù)關(guān)系式,并求出自變量的取值范圍.

是否存在這樣的點,使?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中兩條直線為l1:y=–3x+3,l2:y=–3x+9,直線l1x軸于點A,交y軸于點B,直線l2x軸于點D,過點Bx軸的平行線交l2于點C,點A、E關(guān)于y軸對稱,拋物線y=ax2+bx+cE、B、C三點,下列判斷中:

①a–b+c=0;

②2a+b+c=5;

③拋物線關(guān)于直線x=1對稱;

④拋物線過點(b,c);

⑤S四邊形ABCD=5;

其中正確的個數(shù)有( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個邊長分別為a,b(a>b)的正方形連在一起,三點C,B,F(xiàn)在同一直線上,反比例函數(shù)y=在第一象限的圖象經(jīng)過小正方形右下頂點E.若OB2﹣BE2=10,則k的值是( 。

A. 3 B. 4 C. 5 D. 4

查看答案和解析>>

同步練習(xí)冊答案