如圖,O是坐標(biāo)原點(diǎn),∠OBA=90°,點(diǎn)A在x軸上,點(diǎn)B的坐標(biāo)為(4,3),將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn),點(diǎn)B的對(duì)應(yīng)點(diǎn)B1落在x軸上,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)是(    ,   
【答案】分析:要求A1坐標(biāo),須知OB1、A1B1的長(zhǎng)度,即在△AOB中求OB、AB的長(zhǎng)度.作BC⊥OA于點(diǎn)C,運(yùn)用射影定理求解.
解答:解:作BC⊥OA于點(diǎn)C.
∵B點(diǎn)的坐標(biāo)為(4,3),
∴OC=4,BC=3.
∴根據(jù)勾股定理得OB=5;
根據(jù)射影定理得,OB2=OC•OA,
∴OA=,
∴AB====
∴OB1=5,A1B1=
∵A1在第四象限,
∴A1(5,-).
故答案為:5,-
點(diǎn)評(píng):此題主要考查了勾股定理以及旋轉(zhuǎn)的性質(zhì),此題關(guān)鍵是運(yùn)用勾股定理和射影定理求相關(guān)線段的長(zhǎng)度,根據(jù)點(diǎn)所在位置確定點(diǎn)的坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,O是坐標(biāo)原點(diǎn),A是X軸上的一點(diǎn),C是Y軸上的一點(diǎn),OB是以A圓心的半精英家教網(wǎng)圓的直徑,BD∥AC交半圓于D,其BD=2,
(1)當(dāng)A、C的坐標(biāo)分別為(x,0),(0,y)時(shí),請(qǐng)用x的代數(shù)式表示y;
(2)當(dāng)A點(diǎn)的坐標(biāo)為(2,0)時(shí),求過(guò)C、D兩點(diǎn),頂點(diǎn)在直線x=2上的拋物線的解析式;
(3)在所求的拋物線上是否存在點(diǎn)P,使得S△POB=2S△OAD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,O是坐標(biāo)原點(diǎn),直線OA與雙曲線y=
k
x
(k≠0)
在第一象限內(nèi)交于精英家教網(wǎng)點(diǎn)A,過(guò)點(diǎn)A作AB⊥x軸,垂足為B,若OB=4,tan∠AOB=
1
2

(1)求雙曲線的解析式;
(2)直線AC與y軸交于點(diǎn)C(0,1),與x軸交于點(diǎn)D,求△AOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•集美區(qū)一模)如圖,O是坐標(biāo)原點(diǎn),∠OBA=90°,點(diǎn)A在x軸上,點(diǎn)B的坐標(biāo)為(4,3),將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn),點(diǎn)B的對(duì)應(yīng)點(diǎn)B1落在x軸上,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)是(
5
5
,
-
15
4
-
15
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•犍為縣模擬)如圖,O是坐標(biāo)原點(diǎn),直線OA與雙曲線y=
k
x
(k≠0)在第一象限內(nèi)交于點(diǎn)A,過(guò)點(diǎn)A作AB⊥x軸,垂足為B,若OB=4,tan∠AOB=
1
2

(1)求雙曲線的解析式;
(2)直線AC與y軸交于點(diǎn)C(0,1),與x軸交于點(diǎn)D,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年重慶市開縣鐵橋中學(xué)九年級(jí)(下)月考數(shù)學(xué)試卷(4月份)(解析版) 題型:解答題

如圖,O是坐標(biāo)原點(diǎn),直線OA與雙曲線在第一象限內(nèi)交于點(diǎn)A,過(guò)點(diǎn)A作AB⊥x軸,垂足為B,若OB=4,tan∠AOB=
(1)求雙曲線的解析式;
(2)直線AC與y軸交于點(diǎn)C(0,1),與x軸交于點(diǎn)D,求△AOD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案