【題目】如圖,在由邊長為1的小正方形組成的網(wǎng)格中,的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)解答:

1)判斷的形狀,并說明理由;

2)在網(wǎng)格圖中畫出AD//BC,且AD=BC

3)連接CD,若EBC中點(diǎn),FAD中點(diǎn),四邊形AECF是什么特殊的四邊形?請(qǐng)說明理由.

【答案】1是直角三角形,理由見解析;(2)圖見解析;(3)四邊形是菱形,理由見解析.

【解析】

1)先結(jié)合網(wǎng)格特點(diǎn),利用勾股定理求出三邊長,再根據(jù)勾股定理的逆定理即可得;

2)先利用平移的性質(zhì)得到點(diǎn)D,再連接AD即可;

3)先根據(jù)線段中點(diǎn)的定義、等量代換可得,再根據(jù)平行四邊形的判定可得四邊形AECF是平行四邊形,然后根據(jù)直角三角形的性質(zhì)可得,最后根據(jù)菱形的判定、正方形的判定即可得.

1是直角三角形,理由如下:

,

是直角三角形;

2)由平移的性質(zhì)可知,先將點(diǎn)B向下平移3個(gè)單位,再向右平移4個(gè)單位可得點(diǎn)C

同樣,先將點(diǎn)A向下平移3個(gè)單位,再向右平移4個(gè)單位可得點(diǎn)D,然后連接AD

則有,且,作圖結(jié)果如下所示:

3)四邊形是菱形,理由如下:

中點(diǎn),中點(diǎn)

,

,即

四邊形是平行四邊形

中點(diǎn),的斜邊

平行四邊形是菱形

不是等腰直角三角形

BC不垂直,即

菱形不是正方形

綜上,四邊形是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①倒數(shù)等于本身的數(shù)是±1;②互為相反數(shù)的兩個(gè)非零數(shù)的商為﹣1;③如果兩個(gè)數(shù)的絕對(duì)值相等,那么這兩個(gè)數(shù)相等;④有理數(shù)可以分為正有理數(shù)和負(fù)有理數(shù);⑤單項(xiàng)式﹣的系數(shù)是﹣,次數(shù)是6;⑥多項(xiàng)式a3+4a28是三次三項(xiàng)式,其中正確的個(gè)數(shù)是( 。

A. 2 個(gè)B. 3 個(gè)C. 4 個(gè)D. 5 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=mx+ny=mnxmn≠0),在同一平面直角坐標(biāo)系的圖象是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知ABCD,AB=CD,∠A=D.

1)求證:四邊形ABCD為矩形

2)若點(diǎn)EAB邊上的中點(diǎn),點(diǎn)FAD邊上一點(diǎn),∠1=22,CF=5,求AF+BC的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平行四邊形ABCD中,BC=2AB,CE⊥AB于E,F(xiàn)為AD的中點(diǎn),若∠AEF=54,則∠B=( )

A. 54 B. 60 C. 72 D. 66

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從①AB//CD;②AB=CD;③BC//AD;④BC=AD這四個(gè)條件中任選兩個(gè),能使四邊形ABCD是平行四邊形的選法有哪幾種,請(qǐng)一一寫出_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB的三個(gè)頂點(diǎn)都在網(wǎng)格的格點(diǎn)上,網(wǎng)格中的每個(gè)小正方形的邊長均為一個(gè)長度單位,以點(diǎn)O建立平面直角坐標(biāo)系,AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90得到A1OB1(AA1是對(duì)應(yīng)點(diǎn))

(1)寫出點(diǎn)A1,B1的坐標(biāo) ;

(2)求旋轉(zhuǎn)過程中邊OB掃過的面積(結(jié)果保留π);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果多項(xiàng)式 2x4 -3x3 +ax2 7 x b能被x2 x 2整除,那么的值為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+2mx﹣m2+1的對(duì)稱軸是直線x=1.

(1)求拋物線的表達(dá)式;

(2)點(diǎn)D(n,y1),E(3,y2)在拋物線上,若y1y2,請(qǐng)直接寫出n的取值范圍;

(3)設(shè)點(diǎn)M(p,q)為拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)﹣1p2時(shí),點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)都在直線y=kx﹣4的上方,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案