【題目】如圖,在等腰Rt△ABC中,∠BAC=90°,BC=2,點P是△ABC內部的一個動點,且滿足∠PBC=∠PCA,則線段AP長的最小值為( )
A.0.5B.﹣1C.2﹣D.
【答案】C
【解析】
先計算出∠PBC+∠PCB=45°,則∠BPC=135°,利用圓周角定理可判斷點P在以BC為弦的⊙O上,如圖,連接OA交于P′,作所對的圓周角∠BQC,利用圓周角定理計算出∠BOC=90°,從而得到△OBC為等腰直角三角形,四邊形ABOC為正方形,所以OA=BC=2,OB=,根據三角形三邊關系得到AP≥OA﹣OP(當且僅當A、P、O共線時取等號,即P點在P′位置),于是得到AP的最小值.
解:∵△ABC為等腰直角三角形,
∴∠ACB=45°,即∠PCB+∠PCA=45°,
∵∠PBC=∠PCA,
∴∠PBC+∠PCB=45°,
∴∠BPC=135°,
∴點P在以BC為弦的⊙O上,如圖,連接OA交于P′,
作所對的圓周角∠BQC,則∠BCQ=180°﹣∠BPC=45°,
∴∠BOC=2∠BQC=90°,
∴△OBC為等腰直角三角形,
∴四邊形ABOC為正方形,
∴OA=BC=2,
∴OB=BC=,
∵AP≥OA﹣OP(當且僅當A、P、O共線時取等號,即P點在P′位置),
∴AP的最小值為2﹣.
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖1,AB為半圓O的直徑,半徑OP⊥AB,過劣弧AP上一點D作DC⊥AB于點C.連接DB,交OP于點E,∠DBA=22.5°.
⑴ 若OC=2,則AC的長為 ;
⑵ 試寫出AC與PE之間的數量關系,并說明理由;
⑶ 連接AD并延長,交OP的延長線于點G,設DC=x,GP=y,請求出x與y之間的等量關系式. (請先補全圖形,再解答)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,E是CD邊上一點,作等邊△BEF,連接AF.
(1)求證:CE=AF;
(2)EF與AD交于點P,∠DPE=48°,求∠CBE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A在線段BD上,在BD的同側作等腰Rt△ABC和等腰Rt△ADE,其中∠ABC=∠AED=90°,CD與BE、AE分別交于點P、M.對于下列結論:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正確的是( 。
A. ①②B. ①②③C. ①②③④D. ①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,動點P從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動.過點P作PD⊥AC于點D(點P不與點A、B重合),作∠DPQ=60°,邊PQ交射線DC于點Q.設點P的運動時間為t秒.
(1)用含t的代數式表示線段DC的長;
(2)當點Q與點C重合時,求t的值;
(3)設△PDQ與△ABC重疊部分圖形的面積為S,求S與t之間的函數關系式;
(4)當線段PQ的垂直平分線經過△ABC一邊中點時,直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了維護國家主權和海洋權力,海監(jiān)部門對我國領海實現了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務的海監(jiān)船以每小時50海里的速度向正東方航行,在處測得燈塔在北偏東方向上,繼續(xù)航行1小時到達處,此時測得燈塔在北偏東方向上.
(1)求的度數;
(2)已知在燈塔的周圍25海里內有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明準備進行如下操作實驗:把一根長為的鐵絲剪成兩段,并把每一段圍成一個正方形.
(1)要使這兩個正方形的面積之和等于,小明該怎么剪?
(2)小剛對小明說:“這兩個正方形的面積之和不可能等于.”小剛的說法對嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(概念提出)如圖 ①,若正△DEF的三個頂點分別在正△ABC的邊AB、BC、AC上,則我們稱△DEF是正△ABC的內接正三角形.
(1)求證:△ADF≌△BED.
(問題解決)利用直尺和圓規(guī)作正三角形的內接正三角形(保留作圖痕跡,不寫作法).
(2)如圖 ②,正△ABC的邊長為a,作正△ABC的內接正△DEF,使△DEF的邊長最短,并說明理由;
(3)如圖③,作正△ABC的內接正△DEF,使FD⊥AB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線(為常數)經過拋物線上的點及拋物線的頂點.拋物線與軸交于點,與軸的另一個交點為.
(1)求的值和點的坐標;
(2)根據圖象,寫出滿足的的取值范圍;
(3)求四邊形的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com