我們定義:“四個頂點都在三角形邊上的正方形是三角形的內(nèi)接正方形” .

已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.

(1)如圖,四邊形CDEF是△ABC的內(nèi)接正方形,則正方形CDEF的邊長a1            ;

(2)如圖,四邊形DGHI是(1)中△EDA的內(nèi)接正方形,則第2個正方形DGHI的邊長a2=              ;繼續(xù)在圖2中的△HGA中按上述方法作第3個內(nèi)接正方形;…以此類推,則第n個內(nèi)接正方形的邊長an=              .(n為正整數(shù))

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量.平面向量可以用有向線段表示,有向線段的長度表示向量的大小,有向線段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.
如以正方形ABCD的四個頂點中某一點為起點,另一個頂點為終點作向量,可以作出8個不同的向量:
AB
、
BA
、
AC
、
CA
、
AD
、
DA
BD
、
DB
(由于
AB
DC
是相等向量,因此只算一個).
(1)作兩個相鄰的正方形(如圖一).以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為f(2),試求f(2)的值;
精英家教網(wǎng)
(2)作n個相鄰的正方形(如圖二)“一字型”排開.以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為f(n),試求f(n)的值;
精英家教網(wǎng)
(3)作2×3個相鄰的正方形(如圖三)排開.以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為f(2×3),試求f(2×3)的值;
精英家教網(wǎng)
(4)作m×n個相鄰的正方形(如圖四)排開.以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為f(m×n),試求f(m×n)的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量.平面向量可以用有向線段表示,有向線段的長度表示向量的大小,有向線段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.
如以正方形ABCD的四個頂點中某一點為起點,另一個頂點為終點作向量,可以作出8個不同的向量:
AB
、
BA
AC
、
CA
、
AD
DA
、
BD
DB
(由于
AB
DC
是相等向量,因此只算一個).
(1)作兩個相鄰的正方形(如圖1).以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為f(2),試直接寫出f(2)的值;
(2)作n個相鄰的正方形(如圖2)“一字型”排開.以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為f(n),試直接寫出f(n)的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探究問題:
(1)閱讀理解:
①如圖(A),在已知△ABC所在平面上存在一點P,使它到三角形頂點的距離之和最小,則稱點P為△ABC的費馬點,此時PA+PB+PC的值為△ABC的費馬距離;
②如圖(B),若四邊形ABCD的四個頂點在同一圓上,則有AB•CD+BC•DA=AC•BD.此為托勒密定理;
精英家教網(wǎng)
(2)知識遷移:
①請你利用托勒密定理,解決如下問題:
如圖(C),已知點P為等邊△ABC外接圓的
BC
上任意一點.求證:PB+PC=PA;
②根據(jù)(2)①的結(jié)論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120°)的費馬點和費馬距離的方法:
第一步:如圖(D),在△ABC的外部以BC為邊長作等邊△BCD及其外接圓;
第二步:在
BC
上任取一點P′,連接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+
 
;
第三步:請你根據(jù)(1)①中定義,在圖(D)中找出△ABC的費馬點P,并請指出線段
 
的長度即為△ABC的費馬距離.
精英家教網(wǎng)
(3)知識應(yīng)用:
2010年4月,我國西南地區(qū)出現(xiàn)了罕見的持續(xù)干旱現(xiàn)象,許多村莊出現(xiàn)了人、畜飲水困難,為解決老百姓的飲水問題,解放軍某部來到云南某地打井取水.
已知三村莊A、B、C構(gòu)成了如圖(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),現(xiàn)選取一點P打水井,使從水井P到三村莊A、B、C所鋪設(shè)的輸水管總長度最小,求輸水管總長度的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某課題學(xué)習(xí)小組在一次活動中對三角形的內(nèi)接正方形的有關(guān)問題進行了探討:
定義:如果一個正方形的四個頂點都在一個三角形的邊上,那么我們就把這個正方形叫做三角形的內(nèi)接正方形.
結(jié)論:在探討過程中,有三位同學(xué)得出如下結(jié)果:
甲同學(xué):在鈍角、直角、不等邊銳角三角形中分別存在
1
1
個、
2
2
個、
3
3
個大小不同的內(nèi)接正方形.
乙同學(xué):在直角三角形中,兩個頂點都在斜邊上的內(nèi)接正方形的面積較大.
任務(wù):(1)填充甲同學(xué)結(jié)論中的數(shù)據(jù);
(2)乙同學(xué)的結(jié)果正確嗎?若不正確,請舉出一個反例并通過計算給予說明,若正確,請給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們定義:“四個頂點都在三角形邊上的正方形是三角形的內(nèi)接正方形”.
已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.
(1)如圖1,四邊形CDEF是△ABC的內(nèi)接正方形,則正方形CDEF的邊長a1
2
2
;
(2)如圖2,四邊形DGHI是(1)中△EDA的內(nèi)接正方形,則第2個正方形DGHI的邊長a2=
4
3
4
3
;繼續(xù)在圖2中的△HGA中按上述方法作第3個內(nèi)接正方形;…以此類推,則第n個內(nèi)接正方形的邊長an=
2n
3n-1
2n
3n-1
.(n為正整數(shù))

查看答案和解析>>

同步練習(xí)冊答案